Global Artificial Intelligence in E-commerce Market Size, Share & Trends Analysis Report, By Technology, By Deployment, by Application, By Region Forecasts, 2024 - 2032

Global Artificial Intelligence in E-commerce Market Size, Share & Trends Analysis Report, By Technology, By Deployment, by Application, By Region Forecasts, 2024 - 2032



Global Artificial Intelligence in E-commerce Market was valued at US $ 7 Billion in 2023 and is expected to reach US $ 28.5 Billion by 2032 growing at a CAGR of 16.9% during the forecast period 2024 – 2032.

The dynamic and developing field where artificial intelligence technologies are used to improve many aspects of online retail operations is known as the ""e-commerce AI market."" This includes integrating AI-driven apps and solutions into websites, systems, and e-commerce platforms in order to boost overall business productivity, enhance consumer experiences, and optimise operations. Machine learning, natural language processing, computer vision, and predictive analytics are just a few of the technologies used in the e-commerce industry to analyse data, automate processes, and provide individualised experiences. Personalised product suggestions, sophisticated search features, inventory control, pricing optimisation, fraud detection, and chatbots powered by artificial intelligence (AI) for customer service are some of the important aspects of this sector.

One of the main factors driving the strong growth of the AI in e-commerce market is the industry's quick adoption of AI technology. There are several benefits to this revolutionary integration of AI, but improving customer experiences is the main one. E-commerce companies utilise advanced machine learning algorithms to fuel their personalised suggestions, chatbots that are responsive, and marketing efforts that are precisely tuned. This strategy fosters increased client happiness and loyalty, which boosts retention rates and repeat business. AI also has an impact on inventory management, strengthening security measures against fraudulent activity, and optimising search and discovery functionalities. AI-enabled dynamic pricing solutions help e-commerce platforms become more competitive and maximise their revenue. Artificial intelligence (AI) quickly processes large datasets, enabling data-driven decision-making and providing businesses with useful information for operational effectiveness and strategic planning. Artificial Intelligence has a significant impact on supply chain optimisation, including demand pattern prediction, logistics optimisation, and the efficient implementation of distribution procedures. This promotes an adaptable and responsive supply chain in addition to cost savings and shorter lead times.

“Machine Learning segment, by technology, to be dominating market from 2023 to 2030.”

Machine Learning (ML) is the most popular AI technology in the e-commerce industry, with a projected 38.6% market share by 2023. Because of its adaptability, machine learning (ML) is widely used in e-commerce applications like fraud detection, consumer segmentation, and product recommendations. By employing advanced algorithms, machine learning methodically examines large datasets to identify patterns and trends, then uses these findings to provide precise forecasts and suggestions.

“Cloud segment, by deployment, to be dominating market from 2023 to 2030.”

Cloud-based solutions have a 63.86% market share and are the industry leader in AI integration for e-commerce, providing e-commerce firms with unmatched scalability, cost-efficiency, and ease of implementation. The pay-as-you-go approach and cloud's flexibility in accommodating varying workloads are ideal for the dynamic nature of e-commerce operations. The cloud's hegemony is further reinforced by its accessibility from any location, constant innovation, and updates that meet the dynamic and collaborative demands of the e-commerce sector. Concurrently, the on-premise model is expanding at a 13.6% CAGR, propelled by companies that place a high priority on customisation, compliance, and data protection.

“Customer Relationship Management segment, by application, to be dominating market from 2023 to 2030.”

Consumer Relationship Management (CRM) is a dominant force in the AI e-commerce space, with a 32% market share, thanks to its essential function in promoting improved consumer interactions and tailored experiences. CRM systems use artificial intelligence (AI) to analyse enormous volumes of consumer data, preferences, and behaviours. This allows organisations to customise their methods and plans. In addition to improving the entire customer experience, this personalised touch greatly raises customer happiness and loyalty. CRM systems enable firms to automate repetitive work, predict consumer behaviour, and make well-informed decisions—all of which contribute to increased productivity and operational efficiency.

“North America to be largest region in Artificial Intelligence in E-commerce market.”

North America became the market leader in 2023 and is expected to stay there with a 38.5% market share during the forecast period. This is due to significant expenditures made in artificial intelligence solutions for the public and government sectors. The expected continuous expansion of the artificial intelligence (AI) in e-commerce market is further aided by the application of AI to automate industrial operations.

Artificial Intelligence in E-commerce Competitive Landscape

The competitive landscape of the Artificial Intelligence in E-commerce market involves assessing the competitive landscape to understand the strengths, weaknesses, opportunities, and threats of the industry. Key industry players have recognized that the adoption of Artificial Intelligence in E-commerce technology holds the potential for further growth. The growing desire among producers to optimize their production costs has spurred collaborative efforts among companies to scale up their production capacity. This strategic collaboration not only aims to increase revenue but also seeks to establish dominance in the market.

The Artificial Intelligence in E-commerce market is highly competitive, with numerous companies vying for market share. Prominent companies in the Artificial Intelligence in E-commerce Market include:

Amazon.com, JD.com, eBay, Alibaba Group, Walmart, Apple, Google, Facebook, IBM, Microsoft, Adobe, Salesforce, NVIDIA, Intel, Qualcomm, SAP, Oracle, BAIDU, ByteDance, Tencent, Meituan, Pinduoduo

Recent developments:

In July 2021, LivePerson, Inc. made a strategic step to augment its self-service capabilities by acquiring e-bot7, a German conversational artificial intelligence firm. With this acquisition, companies of all sizes can now quickly design AI-powered user interfaces. It also helps LivePerson's continuous European expansion initiatives.

LivePerson, Inc. unveiled the A.I. Annotator in February 2021. It's a ground-breaking tool meant to speed up brand-consumer protection. This breakthrough greatly speeds the advancement of conversational AI by utilising agent expertise.

Zoovu successfully obtained $169 million in Series C fundraising in June 2022. This funding will be used to strengthen Zoovu's AI-based platform, which is used by major players in the market like Microsoft, Amazon, and 3M, and to increase the company's presence in the US. Brands and retailers are ready to give improving digital experiences for customers first priority as they anticipate the ongoing rise in online buying.

LivePerson acquired e-bot7 in July 2021 with the intention of helping brands use AI messaging capabilities. With this calculated move, LivePerson will be better positioned to defend its position in important European markets including the UK, France, Germany, Benelux, and others.

Amazon announced plans to invest USD 1 billion in companies that specialise in supply chain management, logistics, safety, and warehouse management solutions in April 2022. The idea of creating the Amazon Industrial Innovation Fund is being considered in order to speed up e-commerce deliveries and enhance the general working conditions for workers in storage and logistics.


1 Introduction Of Global Artificial Intelligence In E-commerce Market
1.1 Overview Of The Market
1.2 Scope Of Report
1.3 Assumptions
2 Executive Summary
3 Research Methodology
3.1 Data Mining
3.2 Validation
3.3 Primary Interviews
3.4 List Of Data Sources
4 Global Artificial Intelligence In E-commerce Market Outlook
4.1 Overview
4.2 Market Dynamics
4.2.1 Drivers
4.2.2 Restraints
4.2.3 Opportunities
4.3 Porters Five Force Model
4.3.1. Bargaining Power Of Suppliers
4.3.2. Threat Of New Entrants
4.3.3. Threat Of Substitutes
4.3.4. Competitive Rivalry
4.3.5. Bargaining Power Among Buyers
4.4 Value Chain Analysis
5 Global Artificial Intelligence In E-commerce Market, By Technology
5.1 Overview
5.2 Natural Language Processing
5.3 Machine Learning
5.4 Computer Vision
6 Global Artificial Intelligence In E-commerce Market, By Application
6.1 Overview
6.2 Customer Relationship Management
6.3 Supply Chain Analysis
6.4 Fake Review Analysis
6.5 Warehouse Automation
6.6 Merchandizing
6.7 Product Recommendation
6.8 Customer Service
7 Global Artificial Intelligence In E-commerce Market, By Deployment
7.1 Overview
7.2 Cloud
7.3 On-premises
8 Global Artificial Intelligence In E-commerce Market, By Region
8.1 North America
8.1.1 U.S.
8.1.2 Canada
8.2 Europe
8.2.1 Germany
8.2.3 U.K.
8.2.4 France
8.2.5 Rest Of Europe
8.3 Asia Pacific
8.3.1 China
8.3.2 Japan
8.3.3 India
8.3.4 South Korea
8.3.5 Singapore
8.3.6 Malaysia
8.3.7 Australia
8.3.8 Thailand
8.3.9 Indonesia
8.3.10 Philippines
8.3.11 Rest Of Asia Pacific
8.4 Others
8.4.1 Saudi Arabia
8.4.2 U.A.E.
8.4.3 South Africa
8.4.4 Egypt
8.4.5 Israel
8.4.6 Rest Of Middle East And Africa (Mea)
8.4.7 Brazil
8.4.8 Argentina
8.4.9 Mexico
8.4.10 Rest Of South America
9 Company Profiles
9.1 Amazon.Com
9.1.1. Company Overview
9.1.2. Key Executives
9.1.3. Operating Business Segments
9.1.4. Product Portfolio
9.1.5. Financial Performance (As Per Availability)
9.1.6 Key News
9.2 Alibaba Group
9.2.1. Company Overview
9.2.2. Key Executives
9.2.3. Operating Business Segments
9.2.4. Product Portfolio
9.2.5. Financial Performance (As Per Availability)
9.2.6. Key News
9.3 Jd.Com
9.3.1. Company Overview
9.3.2. Key Executives
9.3.3. Operating Business Segments
9.3.4. Product Portfolio
9.3.5. Financial Performance (As Per Availability)
9.3.6. Key News
9.4 Ebay
9.4.1. Company Overview
9.4.2. Key Executives
9.4.3. Operating Business Segments
9.4.4. Product Portfolio
9.4.5. Financial Performance (As Per Availability)
9.4.6. Key News
9.5 Walmart
9.5.1. Company Overview
9.5.2. Key Executives
9.5.3. Operating Business Segments
9.5.4. Product Portfolio
9.5.5. Financial Performance (As Per Availability)
9.5.6. Key News
9.6 Apple
9.6.1. Company Overview
9.6.2. Key Executives
9.6.3. Operating Business Segments
9.6.4. Product Portfolio
9.6.5. Financial Performance (As Per Availability)
9.6.6. Key News
9.7 Microsoft
9.7.1. Company Overview
9.7.2. Key Executives
9.7.3. Operating Business Segments
9.7.4. Product Portfolio
9.7.5. Financial Performance (As Per Availability)
9.7.6. Key News
9.8 Google
9.8.1. Company Overview
9.8.2. Key Executives
9.8.3. Operating Business Segments
9.8.4. Product Portfolio
9.8.5. Financial Performance (As Per Availability)
9.8.6. Key News
9.9 Facebook
9.9.1. Company Overview
9.9.2. Key Executives
9.9.3. Operating Business Segments
9.9.4. Product Portfolio
9.9.5. Financial Performance (As Per Availability)
9.9.6. Key News
9.10 Ibm
9.10.1. Company Overview
9.10.2. Key Executives
9.10.3. Operating Business Segments
9.10.4. Product Portfolio
9.10.5. Financial Performance (As Per Availability)
9.10.6. Key News
9.11 Adobe
9.11.1. Company Overview
9.11.2. Key Executives
9.11.3. Operating Business Segments
9.11.4. Product Portfolio
9.11.5. Financial Performance (As Per Availability)
9.11.6. Key News
9.12 Salesforce
9.12.1. Company Overview
9.12.2. Key Executives
9.12.3. Operating Business Segments
9.12.4. Product Portfolio
9.12.5. Financial Performance (As Per Availability)
9.12.6. Key News
9.13 Sap
9.13.1. Company Overview
9.13.2. Key Executives
9.13.3. Operating Business Segments
9.13.4. Product Portfolio
9.13.5. Financial Performance (As Per Availability)
9.13.6. Key News
9.14 Oracle
9.14.1. Company Overview
9.14.2. Key Executives
9.14.3. Operating Business Segments
9.14.4. Product Portfolio
9.14.5. Financial Performance (As Per Availability)
9.14.6. Key News
9.15 Nvidia
9.15.1. Company Overview
9.15.2. Key Executives
9.15.3. Operating Business Segments
9.15.4. Product Portfolio
9.15.5. Financial Performance (As Per Availability)
9.15.6. Key News
9.16 Intel
9.16.1. Company Overview
9.16.2. Key Executives
9.16.3. Operating Business Segments
9.16.4. Product Portfolio
9.16.5. Financial Performance (As Per Availability)
9.16.6. Key News
9.17 Qualcomm
9.17.1. Company Overview
9.17.2. Key Executives
9.17.3. Operating Business Segments
9.17.4. Product Portfolio
9.17.5. Financial Performance (As Per Availability)
9.17.6. Key News
9.18 Baidu
9.18.1. Company Overview
9.18.2. Key Executives
9.18.3. Operating Business Segments
9.18.4. Product Portfolio
9.18.5. Financial Performance (As Per Availability)
9.18.6. Key News
9.19 Tencent
9.19.1. Company Overview
9.19.2. Key Executives
9.19.3. Operating Business Segments
9.19.4. Product Portfolio
9.19.5. Financial Performance (As Per Availability)
9.19.6. Key News
9.20 Bytedance
9.20.1. Company Overview
9.20.2. Key Executives
9.20.3. Operating Business Segments
9.20.4. Product Portfolio
9.20.5. Financial Performance (As Per Availability)
9.20.6. Key News
9.21 Meituan
9.21.1. Company Overview
9.21.2. Key Executives
9.21.3. Operating Business Segments
9.21.4. Product Portfolio
9.21.5. Financial Performance (As Per Availability)
9.21.6. Key News
9.22 Pinduoduo
9.22.1. Company Overview
9.22.2. Key Executives.
9.22.3. Operating Business Segments
9.22.4. Product Portfolio
9.22.5. Financial Performance (As Per Availability)
9.22.6. Key News

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings