Global Artificial Intelligence in Manufacturing Market Size, Share & Trends Analysis Report, By offering, By technology, By application, By end-use industry, By Region Forecasts, 2023 - 2030
Global Artificial Intelligence in Manufacturing Market was valued at US $ 17.5 Billion in 2022 and is expected to reach US $267.3 Billion by 2030 growing at a CAGR of 40.6% during the forecast period 2023 – 2030.
The field devoted to the creation, use, and integration of artificial intelligence technologies and solutions in the manufacturing sector is known as the ""AI in manufacturing market."" Numerous AI applications are covered by this industry, such as process automation, supply chain optimisation, quality control, and predictive maintenance. Artificial Intelligence (AI) technologies, including robots, computer vision, natural language processing, and machine learning, are used to improve product quality, save costs, increase operational efficiency, and meet changing market demands. AI is revolutionising the manufacturing industry by enabling traditional manufacturing techniques to become more data-driven, adaptable, and competitive in a world that is becoming more digital and networked by the day.
The manufacturing industry is experiencing dynamic expansion due to the growing adoption of Industry 4.0 technologies. These technologies, which include automation, IoT, data analytics, and artificial intelligence (AI), usher in a period of increased productivity and efficiency. Manufacturers can maintain product quality, minimise downtime, and streamline processes by utilising real-time data and predictive maintenance capabilities. Industry 4.0 technologies give organisations a competitive edge by streamlining supply chains, enabling mass customisation, and enabling quick adaptation to changing market demands. Moreover, by consuming less energy and garbage, they support environmental sustainability goals. When these technologies become more widely used, they open up new markets, stimulate economic expansion, and provide employment, all of which help to advance the sector as a whole.
“Machine Learning segment, by technology, to be dominating market from 2023 to 2030.”
With over 67% of the market, machine learning is the most widely used technology in the AI manufacturing space. Its intrinsic capacity to extract insights from data and perform predictive analyses is credited with its dominance. This ability is essential for many manufacturing applications, such as supply chain optimisation, quality control, and predictive maintenance.
“Software segment, by offering, to be dominating market from 2023 to 2030.”
Software is the industry leader in artificial intelligence (AI) for manufacturing because of its scalability, flexibility, and ability to automate crucial industrial processes. This makes software an essential option for improving data analytics and operational efficiency. Software solutions are preferred for their cost-effectiveness and data-driven decision-making skills since they can adapt to different production needs.
“Predictive maintenance and machinery inspection segment, by application, to be dominating market from 2023 to 2030.”
With a substantial market share of more than 32.3%, predictive maintenance and machinery inspection presently lead the AI applications in the manufacturing scene. Because maintenance can anticipate possible equipment breakdowns, it is an essential tool for reducing downtime and increasing operational efficiency. By being proactive, this reduces the need for expensive maintenance and production process interruptions. Sensor data is being collected at an exponential rate in the manufacturing sector, providing useful information on how well equipment is performing. In order to interpret these data patterns and identify possible problems early on, artificial intelligence (AI) is essential.
“Automotive segment, by end user industries, to be dominating market from 2023 to 2030.”
Because of its enormous scope, global reach, and high reliance on automation, the automobile industry has emerged as the leader in the AI in manufacturing business. Automation of production processes, more efficiency, and improved quality control have all been made possible by AI technologies. AI also helps the automobile industry with supply chain management, personalising cars to suit each customer's preferences, and promoting innovation in connected and driverless vehicles.
“North America to be largest region in Artificial Intelligence in Manufacturing market.”
With a market share of over 32.65%, the North American region now leads the world in artificial intelligence (AI) for manufacturing. This is because the region is home to well-known digital innovation hubs like Silicon Valley and a developed ecosystem of startups and academic institutions that actively work together to promote AI. The area gains from large investments, an abundance of venture capital, and a highly qualified labour force that graduates from prestigious colleges. The manufacturing industry in North America has been quick to adopt AI technologies, improving supply chains and procedures, which helps explain why the region leads the world in this area.
Artificial Intelligence in Manufacturing Competitive Landscape
The competitive landscape of the Artificial Intelligence in Manufacturing market involves assessing the competitive landscape to understand the strengths, weaknesses, opportunities, and threats of the industry. Key industry players have recognized that the adoption of Artificial Intelligence in Manufacturing technology holds the potential for further growth. The growing desire among producers to optimize their production costs has spurred collaborative efforts among companies to scale up their production capacity. This strategic collaboration not only aims to increase revenue but also seeks to establish dominance in the market.
The Artificial Intelligence in Manufacturing market is highly competitive, with numerous companies vying for market share. Prominent companies in the Artificial Intelligence in Manufacturing Market include:
Siemens, NVIDIA, General Electric, IBM, Intel, Oracle, SAP, ABB, Honeywell, Bosch, Rockwell Automation, Schneider Electric, PTC, GE Digital, Dassault Systèmes, Emerson Electric, Autodesk, Cognite, Ansys, Microsoft and others.
Recent Developments:
Google and Siemens announced their partnership in June 2023 with the goal of advancing AI-driven manufacturing solutions. The goal of this collaboration is to develop cutting-edge AI apps and algorithms that improve production procedures, reduce downtime, and improve quality control requirements.
IBM and GE teamed up in May 2023 to create the first predictive maintenance systems based on AI. Through this strategic relationship, state-of-the-art artificial intelligence algorithms that anticipate equipment breakdown will be developed, allowing for preventive maintenance and averting expensive operational disruptions.
Microsoft and Rockwell Automation began working together in April 2023 with the goal of creating manufacturing solutions driven by artificial intelligence. Together, they are developing cutting-edge AI apps and algorithms to streamline production lines, cut costs, and improve quality control procedures.
NVIDIA and Bosch announced a ground-breaking partnership in March 2023, with an emphasis on AI-powered manufacturing solutions. They pledge to produce cutting-edge AI algorithms and applications through this relationship that improve manufacturing procedures, improve quality control, and stimulate cost-cutting initiatives.
Global Artificial Intelligence in Manufacturing Market was valued at US $ 17.5 Billion in 2022 and is expected to reach US $267.3 Billion by 2030 growing at a CAGR of 40.6% during the forecast period 2023 – 2030.
The field devoted to the creation, use, and integration of artificial intelligence technologies and solutions in the manufacturing sector is known as the ""AI in manufacturing market."" Numerous AI applications are covered by this industry, such as process automation, supply chain optimisation, quality control, and predictive maintenance. Artificial Intelligence (AI) technologies, including robots, computer vision, natural language processing, and machine learning, are used to improve product quality, save costs, increase operational efficiency, and meet changing market demands. AI is revolutionising the manufacturing industry by enabling traditional manufacturing techniques to become more data-driven, adaptable, and competitive in a world that is becoming more digital and networked by the day.
The manufacturing industry is experiencing dynamic expansion due to the growing adoption of Industry 4.0 technologies. These technologies, which include automation, IoT, data analytics, and artificial intelligence (AI), usher in a period of increased productivity and efficiency. Manufacturers can maintain product quality, minimise downtime, and streamline processes by utilising real-time data and predictive maintenance capabilities. Industry 4.0 technologies give organisations a competitive edge by streamlining supply chains, enabling mass customisation, and enabling quick adaptation to changing market demands. Moreover, by consuming less energy and garbage, they support environmental sustainability goals. When these technologies become more widely used, they open up new markets, stimulate economic expansion, and provide employment, all of which help to advance the sector as a whole.
“Machine Learning segment, by technology, to be dominating market from 2023 to 2030.”
With over 67% of the market, machine learning is the most widely used technology in the AI manufacturing space. Its intrinsic capacity to extract insights from data and perform predictive analyses is credited with its dominance. This ability is essential for many manufacturing applications, such as supply chain optimisation, quality control, and predictive maintenance.
“Software segment, by offering, to be dominating market from 2023 to 2030.”
Software is the industry leader in artificial intelligence (AI) for manufacturing because of its scalability, flexibility, and ability to automate crucial industrial processes. This makes software an essential option for improving data analytics and operational efficiency. Software solutions are preferred for their cost-effectiveness and data-driven decision-making skills since they can adapt to different production needs.
“Predictive maintenance and machinery inspection segment, by application, to be dominating market from 2023 to 2030.”
With a substantial market share of more than 32.3%, predictive maintenance and machinery inspection presently lead the AI applications in the manufacturing scene. Because maintenance can anticipate possible equipment breakdowns, it is an essential tool for reducing downtime and increasing operational efficiency. By being proactive, this reduces the need for expensive maintenance and production process interruptions. Sensor data is being collected at an exponential rate in the manufacturing sector, providing useful information on how well equipment is performing. In order to interpret these data patterns and identify possible problems early on, artificial intelligence (AI) is essential.
“Automotive segment, by end user industries, to be dominating market from 2023 to 2030.”
Because of its enormous scope, global reach, and high reliance on automation, the automobile industry has emerged as the leader in the AI in manufacturing business. Automation of production processes, more efficiency, and improved quality control have all been made possible by AI technologies. AI also helps the automobile industry with supply chain management, personalising cars to suit each customer's preferences, and promoting innovation in connected and driverless vehicles.
“North America to be largest region in Artificial Intelligence in Manufacturing market.”
With a market share of over 32.65%, the North American region now leads the world in artificial intelligence (AI) for manufacturing. This is because the region is home to well-known digital innovation hubs like Silicon Valley and a developed ecosystem of startups and academic institutions that actively work together to promote AI. The area gains from large investments, an abundance of venture capital, and a highly qualified labour force that graduates from prestigious colleges. The manufacturing industry in North America has been quick to adopt AI technologies, improving supply chains and procedures, which helps explain why the region leads the world in this area.
Artificial Intelligence in Manufacturing Competitive Landscape
The competitive landscape of the Artificial Intelligence in Manufacturing market involves assessing the competitive landscape to understand the strengths, weaknesses, opportunities, and threats of the industry. Key industry players have recognized that the adoption of Artificial Intelligence in Manufacturing technology holds the potential for further growth. The growing desire among producers to optimize their production costs has spurred collaborative efforts among companies to scale up their production capacity. This strategic collaboration not only aims to increase revenue but also seeks to establish dominance in the market.
The Artificial Intelligence in Manufacturing market is highly competitive, with numerous companies vying for market share. Prominent companies in the Artificial Intelligence in Manufacturing Market include:
Siemens, NVIDIA, General Electric, IBM, Intel, Oracle, SAP, ABB, Honeywell, Bosch, Rockwell Automation, Schneider Electric, PTC, GE Digital, Dassault Systèmes, Emerson Electric, Autodesk, Cognite, Ansys, Microsoft and others.
Recent Developments:
Google and Siemens announced their partnership in June 2023 with the goal of advancing AI-driven manufacturing solutions. The goal of this collaboration is to develop cutting-edge AI apps and algorithms that improve production procedures, reduce downtime, and improve quality control requirements.
IBM and GE teamed up in May 2023 to create the first predictive maintenance systems based on AI. Through this strategic relationship, state-of-the-art artificial intelligence algorithms that anticipate equipment breakdown will be developed, allowing for preventive maintenance and averting expensive operational disruptions.
Microsoft and Rockwell Automation began working together in April 2023 with the goal of creating manufacturing solutions driven by artificial intelligence. Together, they are developing cutting-edge AI apps and algorithms to streamline production lines, cut costs, and improve quality control procedures.
NVIDIA and Bosch announced a ground-breaking partnership in March 2023, with an emphasis on AI-powered manufacturing solutions. They pledge to produce cutting-edge AI algorithms and applications through this relationship that improve manufacturing procedures, improve quality control, and stimulate cost-cutting initiatives.