Global Artificial Neural Networks (ANN) Market - 2023-2030
Global Artificial Neural Networks (ANN) Market reached US$ 164.3 million in 2022 and is expected to reach US$ 600.3 million by 2030 growing with a CAGR of 17.6% during the forecast period 2023-2030. The rising demand for advanced technology is a major driver for the artificial neural networks (ANN) market. ANN technology is being implemented across various industry verticals such as healthcare, banking, financial services, insurance and retail and e-commerce.
In healthcare, the technology is used for disease diagnosis, drug discovery, and medical imaging analysis and has shown the fastest growth during the COVID-19 period. Furthermore, in finance, it aids in fraud detection, risk assessment, and algorithmic trading. Other sectors benefit from ANN applications in demand forecasting, customer behavior analysis, autonomous vehicles, and more.
North America holds a dominating position in the artificial neural networks (ANN) market followed by Asia-Pacific and Europe. The growing region's advanced technological infrastructure, high research and development investments, and the presence of leading technology companies lead to cover region nearly half of the share globally.
Market DynamicsRising Technological Advancements
Rising advancements in technology including improvements in hardware, software, and algorithms are making ANN solutions more powerful and effective. For example, the development of deep learning algorithms has enabled ANN solutions to process and analyze larger datasets with greater accuracy and speed.
Moreover, the growing popularity of Internet of Things (IoT) devices is also boosting the ANN market. IoT devices generate vast amounts of data that can be used for predictive analytics, and ANN solutions are particularly effective at analyzing this data to identify patterns and trends. Furthermore, the ANN market is expected to continue its rapid growth due to ongoing advancements in AI research, increasing data availability, and the need for intelligent automation in various sectors. As ANN algorithms and architectures continue to evolve, their applications are likely to expand, enabling businesses to extract actionable insights and drive innovation.
Increasing Demand for AI Solutions
The growing demand for AI-powered solutions across industries is a major driver of the ANN market. Organizations are leveraging ANN technology to develop intelligent systems that can analyze large volumes of data, learn from patterns, and make accurate predictions or decisions. ANN finds applications in areas such as predictive analytics, natural language processing, image recognition, and autonomous systems.
For instance, ANN models have demonstrated extraordinary success in the image and pattern recognition tasks. The demand for image recognition applications, such as facial recognition, object detection, and autonomous driving, is increasing across industries. ANN-based algorithms can analyze images, detect patterns, and make accurate predictions, enabling applications like autonomous vehicles, medical imaging, and quality control in manufacturing.
Tracking and Interpretation Difficulties
The lack of tracking and interpretability of ANN solutions even after high investments is a major factor that is hampering the market. ANN solutions can be difficult to understand and interpret, making it challenging for businesses and organizations to trust and use these solutions.
There is a growing demand for more transparent and interpretable ANN solutions, particularly in industries such as healthcare and finance, where decisions based on ANN predictions can have significant consequences.
COVID-19 Impact AnalysisThe pandemic has hampered as as well created several growth prospects for the artificial neural networks (ANN) market. For instance, the shift towards remote learning and increased reliance on telecommunication technologies during the pandemic have created opportunities for ANN applications. Whereas, the disruptions caused by the pandemic in global supply chains have affected the ANN market. Delays in the production and delivery of hardware components and computing infrastructure have impacted the deployment of ANN systems.
Segment AnalysisThe global artificial neural networks (ANN) market is segmented based on type, component, deployment, application, end-user and region.
Growing Demand For A Network With Great Adaptability And Learning Features
Feedback artificial neural network is expected to hold a significant share in the forecast period making it to cover more than 33.3% globally. Feedback neural networks allow for the transmission of signals in both ways. The complexity of feedback neural networks can grow quickly and they are quite powerful. Neural networks with feedback are dynamic. When such a network reaches an equilibrium point, the ""state"" will no longer change. Until the input changes and a new equilibrium needs to be reached, they stay at the equilibrium point.
Recurrent or interactive are other names for the architecture of a feedback neural network, but the latter is frequently used to describe feedback connections in single-layer organizations. These networks allow for feedback loops. In content addressable memories, they are employed. One of the advantages of FBANNs is their ability to adapt and learn over time. The feedback connections allow the network to adjust its connections and weights based on feedback signals, improving its accuracy and performance over time.
Geographical AnalysisPresence Of Key Players And Their Rising Investments In The Market
The presence of key players in North America is a major factor boosting the market growth of the ANN market. The companies include IBM Corporation, Microsoft Corporation, Intel Corporation, Google LLC, and Oracle Corporation, among others. These companies are investing heavily in research and development to improve the capabilities and applications of ANN. Additionally, partnerships and collaborations with other companies in the region are expected to further drive the growth of the ANN market in North America.
For instance, On November 3, 2021, Oracle Corporation announced the launch of new AI services on Oracle cloud infrastructure. Developers can train the new OCI AI services using data specific to their organizations or utilize pre-trained, out-of-the-box models on business-related data.
Competitive LandscapeThe major global players in the market include IBM Corporation, Qualcomm Technologies, Inc, Intel Corporation, Oracle, nDimensional, Alyuda Research, LLC, Microsoft, SAP SE, Starmind, Afiniti, Ward Systems Group, Inc, Google LLC, NeuralWare, Microsoft.
Why Purchase the Report?• To visualize the global artificial neural networks (ANN) market segmentation based on type, component, deployment, application, end-user and region, as well as understand key commercial assets and players.
• Identify commercial opportunities by analyzing trends and co-development.
• Excel data sheet with numerous data points of artificial neural networks (ANN) market-level with all segments.
• PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
• Product mapping available as excel consisting of key products of all the major players.
The global artificial neural networks (ANN) market report would provide approximately 77 tables, 78 figures and 199 Pages.
Target Audience 2023• Manufacturers/ Buyers
• Industry Investors/Investment Bankers
• Research Professionals
• Emerging Companies