AI/ML in Drug Discovery Market - A Global and Regional Analysis: Focus on Use Case, Mode of Deployment, Therapeutic Application, and End User - Analysis and Forecast, 2025-2035

Introduction to AI/ML in Drug Discovery Market

The AI/ML drug discovery market is rapidly evolving, driven by advancements in artificial intelligence (AI) and machine learning (ML) technologies. These tools are transforming the way pharmaceutical companies approach the discovery of new drugs, accelerating the process and improving accuracy in identifying potential therapeutic candidates. By harnessing vast datasets and computational models, AI and ML help researchers make informed decisions faster, reducing both the time and costs associated with traditional drug development processes.

AI and ML technologies enable predictive modeling, drug screening, AI-enabled drug discovery and clinical trials, and the optimization of molecular structures. They also facilitate the discovery of novel drug targets, drug repurposing, and the design of clinical trials, ultimately resulting in more effective treatments reaching the market quickly. The ability to process large volumes of data from genetic sequences to chemical compounds has made AI/ML indispensable in identifying patterns and insights that would be difficult or impossible for human researchers to uncover alone. The AI/ML in drug discovery market is expected to experience significant growth over the next few years. Key factors contributing to this include the increasing need for cost-effective drug development, a growing volume of available biological and clinical data, and the enhanced computational power of AI/ML tools. In addition, strategic collaborations between AI startups and established pharmaceutical companies are further accelerating innovation in this space.

Advances in AI/ML algorithms and models, particularly in areas such as deep learning, are improving the accuracy and efficiency of drug discovery, creating new opportunities for breakthrough therapies. With AI-powered tools becoming more accessible, smaller biotech firms are also able to leverage these technologies, increasing competition and driving innovation within the industry.

Opportunities in the AI/ML in drug discovery market are plentiful, with significant applications across various stages of drug development. These include:

Target Identification and Validation: AI and ML can identify novel drug targets based on patterns in genetic, proteomic, and clinical data.
Drug Screening and Lead Optimization: AI/ML models can quickly screen millions of chemical compounds, predicting their efficacy and safety.
Clinical Biomarker Discovery: AI/ML can identify biomarkers for diseases, enabling more personalized treatments and precision medicine.
Clinical Trial Design and Patient Recruitment: AI models can help design optimized clinical trials and select the right patient populations, improving trial success rates.

Despite the promising opportunities, there are several challenges. Data privacy concerns, the need for high-quality datasets, regulatory hurdles, and the complexity of integrating AI/ML into traditional pharmaceutical workflows remain significant barriers.

The competitive landscape of the AI/ML in drug discovery market is dynamic, with key players ranging from established pharmaceutical companies to innovative AI startups. Big tech companies such as Google and IBM have also entered the space, bringing their expertise in AI and computational power. Startups focused specifically on AI for drug discovery, such as Atomwise, BenevolentAI, and Insilico Medicine, are pushing the boundaries of what AI and ML can accomplish in terms of accelerating drug development.

The AI/ML in drug discovery market is positioned for continued growth as AI and ML technologies increasingly reshape drug development processes. With the potential to drive efficiencies, cut costs, and bring new therapies to market faster.

The competitive landscape is fragmented, with key players including Google, Microsoft Corporation, Illumina, Inc., Verge Genomics, Recursion, and Valo Health. These companies are focused on technological innovation, strategic acquisitions, and partnerships to expand their product portfolios and strengthen their market position.

Market Segmentation:

Segmentation 1: by Use Case

Drug Repurposing
Drug Design
Drug Optimization
Safety and Toxicity

Segmentation 2: by Mode of Deployment

On-Premise
Web-based
SaaS-based

Segmentation 3: by Therapeutic Application

Cardiovascular Diseases
Nervous System Diseases
Metabolic Diseases
Immunologic Diseases
Infectious Diseases
Others

Segmentation 4: by End User

Biopharma and Pharmaceutical Companies
CROs
Academic Institute and Research Center

Segmentation 5: by Region

North America
Europe
Asia-Pacific
Latin America
Middle East and Africa

The Asia-Pacific region is expected to witness the highest growth rate in the global AI/ML in drug discovery market. This growth is driven by rapid advancements in healthcare infrastructure, rising healthcare awareness, and increasing disposable incomes in emerging economies such as China, India, and Southeast Asia. The rising prevalence of cardiovascular diseases, particularly in countries like China and India, due to changing lifestyles, urbanization, and aging populations, is significantly contributing to the market expansion. Moreover, the demand for cost-effective, portable, and easy-to-use cardiac monitoring devices is increasing in the region, as patients seek to monitor their heart health from the comfort of their homes. The growing popularity of wearable devices and remote monitoring technologies is also driving growth in the Asia-Pacific market. As healthcare systems in these countries continue to improve, the adoption of advanced AI/ML in drug discovery is expected to surge, creating ample opportunities for both global and local manufacturers.

*PDF email from publisher allows for 1-3 users, with permission to print*

Please Note:
It will take 1-5 business days to complete the report upon order confirmation.


Executive Summary
1. Product Definition
1.1 Inclusion and Exclusion
2. Market Scope
2.1 Scope of Work
2.2 Key Questions Answered in the Report
3. Research Methodology
3.1 Global AI/ML in Drug Discovery Market: Research Methodology
3.2 Data Sources
3.2.1 Primary Data Sources
3.2.2 Secondary Data Sources
3.3 Market Estimation Model
3.3.1 Assumptions Limitations
4. Global AI/ML in Drug Discovery Market: Overview
4.1 Key Trends
4.2 Patent Analysis
4.3 Regulatory Framework
4.4 Business Models
4.5 Investments and Funding Scenario
5. Global AI/ML in Drug Discovery Market: Market Dynamics
5.1 Impact Analysis
5.2 Market Drivers
5.3 Market Restraints
5.4 Market Opportunities
6. Global AI/ML in Drug Discovery Market (by Use Case)
6.1 Understanding Disease
6.2 Drug Repurposing
6.3 Drug Design
6.4 Drug Optimization
6.5 Safety and Toxicity
7. Global AI/ML in Drug Discovery Market (by Mode of Deployment)
7.1 On-Premise Deployment
7.2 Web based Deployment
7.3 SAAS-based Deployment
8. Global AI/ML in Drug Discovery Market (by Therapeutic Application)
8.1 Oncology
8.2 Cardiovascular Diseases
8.3 Nervous System Diseases
8.4 Metabolic Diseases
8.5 Immunologic Diseases
8.6 Infectious Diseases
8.7 Others
9. Global AI/ML in Drug Discovery Market (by End User)
9.1 Biopharmaceutical and Pharmaceutical Companies
9.2 Contract Research Organizations (CROs)
9.3 Academic Institutes and Research Centers
10. Global AI/ML in Drug Discovery Market (by Region)
10.1 North America AI/ML in Drug Discovery Market
10.1.1 Market Dynamics
10.1.2 Market Size and Forecast
10.1.2.1 U.S.
10.1.2.2 Canada
10.2 Europe AI/ML in Drug Discovery Market
10.2.1 Market Dynamics
10.2.2 Market Sizing and Forecast
10.2.2.1 Germany
10.2.2.2 U.K.
10.2.2.3 France
10.2.2.4 Italy
10.2.2.5 Spain
10.2.2.6 Rest-of-Europe
10.3 Asia-Pacific AI/ML in Drug Discovery Market
10.3.1 Market Dynamics
10.3.2 Market Size and Forecast
10.3.2.1 China
10.3.2.2 Japan
10.3.2.3 India
10.3.2.4 Australia
10.3.2.5 South Korea
10.3.2.6 Rest-of Asia-Pacific
10.4 Latin America AI/ML in Drug Discovery Market
10.4.1 Market Dynamics
10.4.2 Market Size and Forecast
10.4.2.1 Brazil
10.4.2.2 Mexico
10.4.2.3 Rest of Latin America
10.5 Rest-of-the-World AI/ML in Drug Discovery Market
10.5.1 Market Dynamics
10.5.2 Market Size and Forecast
11. Global AI/ML in Drug Discovery Market: Competitive Landscape
11.1 Key Strategies and Development
11.1.1 New Offerings
11.1.2 Regulatory Approvals
11.1.3 Mergers and Acquisitions
11.1.4 Partnerships, Alliances, and Business Expansions
11.1.5 Funding Activities
11.2 Company Profiles
11.2.1 Nividia
11.2.1.1 Company Overview
11.2.1.2 Product Portfolio/Offering
11.2.1.3 Key Competitors
11.2.1.4 Target Customers/End Users
11.2.1.5 Analyst View
11.2.2 Accutar Biotechnology Inc
11.2.2.1 Company Overview
11.2.2.2 Product Portfolio/Offering
11.2.2.3 Key Competitors
11.2.2.4 Target Customers/End Users
11.2.2.5 Analyst View
11.2.3 Atomwise, Inc.
11.2.3.1 Company Overview
11.2.3.2 Product Portfolio/Offering
11.2.3.3 Key Competitors
11.2.3.4 Target Customers/End Users
11.2.3.5 Analyst View
11.2.4 Insilico Medicine
11.2.4.1 Company Overview
11.2.4.2 Product Portfolio/Offering
11.2.4.3 Key Competitors
11.2.4.4 Target Customers/End Users
11.2.4.5 Analyst View
11.2.5 Google
11.2.5.1 Company Overview
11.2.5.2 Product Portfolio/Offering
11.2.5.3 Key Competitors
11.2.5.4 Target Customers/End Users
11.2.5.5 Analyst View
11.2.6 Microsoft Corporation
11.2.6.1 Company Overview
11.2.6.2 Product Portfolio/Offering
11.2.6.3 Key Competitors
11.2.6.4 Target Customers/End Users
11.2.6.5 Analyst View
11.2.7 NuMedii, Inc
11.2.7.1 Company Overview
11.2.7.2 Product Portfolio/Offering
11.2.7.3 Key Competitors
11.2.7.4 Target Customers/End Users
11.2.7.5 Analyst View
11.2.8 XtalPi, Inc.
11.2.8.1 Company Overview
11.2.8.2 Product Portfolio/Offering
11.2.8.3 Key Competitors
11.2.8.4 Target Customers/End Users
11.2.8.5 Analyst View
11.2.9 Schrödinger, Inc
11.2.9.1 Company Overview
11.2.9.2 Product Portfolio/Offering
11.2.9.3 Key Competitors
11.2.9.4 Target Customers/End Users
11.2.9.5 Analyst View
11.2.10 BenevolentAI
11.2.10.1 Company Overview
11.2.10.2 Product Portfolio/Offering
11.2.10.3 Key Competitors
11.2.10.4 Target Customers/End Users
11.2.10.5 Analyst View
11.2.11 Illumina, Inc.
11.2.11.1 Company Overview
11.2.11.2 Product Portfolio/Offering
11.2.11.3 Key Competitors
11.2.11.4 Target Customers/End Users
11.2.11.5 Analyst View
11.2.12 Recursion
11.2.12.1 Company Overview
11.2.12.2 Product Portfolio/Offering
11.2.12.3 Key Competitors
11.2.12.4 Target Customers/End Users
11.2.12.5 Analyst View
11.2.13 Iktos
11.2.13.1 Company Overview
11.2.13.2 Product Portfolio/Offering
11.2.13.3 Key Competitors
11.2.13.4 Target Customers/End Users
11.2.13.5 Analyst View
11.2.14 Verge Genomics
11.2.14.1 Company Overview
11.2.14.2 Product Portfolio/Offering
11.2.14.3 Key Competitors
11.2.14.4 Target Customers/End Users
11.2.14.5 Analyst View
11.2.15 Valo Health
11.2.15.1 Company Overview
11.2.15.2 Product Portfolio/Offering
11.2.15.3 Key Competitors
11.2.15.4 Target Customers/End Users
11.2.15.5 Analyst View
11.2.16 Other Companies

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings