MLOps Market By Component (Platform, Service), By Deployment Mode (On-premise, Cloud), By Organization Size (Large Enterprises, Small and Medium-sized Enterprises), By Industry Vertical (BFSI, Manufacturing, IT and Telecom, Retail and E-commerce, Energy and Utility, Healthcare, Media and Entertainment, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032
MLOps is a set of practices for collaboration and communication between data scientists and operations professionals. Applying these practices increases the quality, simplifies the management process, and automates the deployment of machine learning and deep learning models in large-scale production environments. It is easier to align models with business needs, as well as regulatory requirements. MLOps is slowly evolving into an independent approach to ML lifecycle management. It applies to the entire lifecycle – data gathering, model creation, orchestration, deployment, health, diagnostics, governance, and business metrics.
Furthermore, adopting MLOps practices provides faster time-to-market for ML projects. It provides self-service environments with access to curated data sets and lets data engineers and data scientists move faster and waste less time with missing or invalid data. In addition, automating all the steps in the MLDC helps to ensure a repeatable process, including how the model is trained, evaluated, versioned, and deployed. Also, MLOps enforce policies that guard against model bias and track changes to data statistical properties and model quality over time. Such benefits provide lucrative opportunities for market growth during the forecast period.
Furthermore, MLOps helps managers and developers to be more agile and strategic in their decisions. In addition, it serves as the map to guide individuals, small teams, and even businesses to achieve their goals, no matter their constraints, be it sensitive data, fewer resources, or small budget.
The MLOps market is segmented into component, deployment mode, organization size, industry vertical, and region. By component, it is bifurcated into platform and service. By deployment mode, it is divided into on-premise and cloud. By organization size, the market is segregated into large enterprises and small & medium-sized enterprises. By industry vertical, the market is classified into BFSI, manufacturing, IT & telecom, retail & e-commerce, energy & utility, healthcare, media and entertainment and others. Region wise, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.
The market players operating in the MLOps market are Akira AI, Alteryx, Amazon Web Services, Inc., Cloudera, Inc., Databricks, Inc., DataRobot, Inc., GAVS Technologies, Google LLC, IBM Corporation and Microsoft Corporation. These major players have adopted various key development strategies such as business expansion, new product launches, and partnerships, which help to drive the growth of the MLOps market globally.
Key Benefits for StakeholdersThe study provides an in-depth analysis of the MLOps market along with the current trends and future estimations to elucidate the imminent investment pockets.
Information about key drivers, restrains, and opportunities and their impact analysis on the MLOps market size is provided in the report.
The Porter’s five forces analysis illustrates the potency of buyers and suppliers operating in the MLOps industry.
The quantitative analysis of the global sports management market for the period 2022–2032 is provided to determine the MLOps market potential.
Technology Trend Analysis
Strategic Recommedations
Expanded list for Company Profiles
SWOT Analysis
Key Market SegmentsBy ComponentPlatform
Service
By Deployment ModeOn-premise
Cloud
By Organization SizeLarge Enterprises
Small and Medium-sized Enterprises
By Industry VerticalBFSI
Manufacturing
IT and Telecom
Retail and E-commerce
Energy and Utility
Healthcare
Media and Entertainment
Others
By RegionNorth America
U.S.
Canada
Europe
UK
Germany
France
Italy
Spain
Rest of Europe
Asia-Pacific
China
Japan
India
Australia
South Korea
Rest of Asia-Pacific
LAMEA
Latin America
Middle East
Africa
Key Market PlayersDataRobot, Inc.
Microsoft Corporation
Amazon Web Services, Inc.
Alteryx
Cloudera, Inc.
GAVS Technologies
IBM Corporation
Databricks, Inc.
Akira AI
Google LLC
Please Note: It will take 7-10 business days to complete the report upon order confirmation.