Generative AI Market By Component (Software, Service), By Technology (Generative Adversarial Networks (GANs), Transformer, Variational Autoencoder (VAE), Diffusion Networks, Retrieval Augmented Generation), By End User (Media and Entertainment, BFSI, IT and Telecom, Healthcare, Automotive and Transportation, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032
Generative AI produces text & images, spanning blog posts, program code, poetry, and artwork. It uses complex machine learning models to predict the next word based on previous word sequences. In other words, it allows computers to abstract the underlying pattern related to the input, and then use that to generate similar content. In addition, generative AI produces a targeted summary after searching through various legal study sources. Therefore, countless hours of human investigation can be reduced through technology. Moreover, it generates code in-editor in real-time and offers whole functions, snippets, and even fully working modules, which is anticipated to help the industry expand in the approaching years. Generative AI makes use of unsupervised learning algorithms for spam detection, image compression, and preprocessing data stage, such as removing noise from visual data, to improve picture quality. Moreover, supervised learning algorithms are used for medical imaging and image classification. Furthermore, it has applications in various industries, such as BFSI, healthcare, automotive & transportation, IT & telecommunications, media & entertainment, and others. Generative AI is a powerful tool that can be used to create new ideas, solve problems, and create new products. In addition, it can help organizations save money and time, increase efficiency, and enhance the quality of content generated.
The generative AI market has experienced significant growth due to the advancements in deep learning. Generative models are type of machine learning that uses AI, probability, and statistics to produce a computer-generated representation of a targeted variable calculated from prior observations, input, or datasets. These improvements make deep learning models more intelligent and capable, enabling them to perform complex tasks such as image recognition, language translation, and content generation more accurately and effectively. In addition, the rise of generative AI is driven by the desire to provide users and consumers with more personalized, engaging and relevant content and experiences, have further fueled the market growth. However, ethical and privacy concerns pose significant challenges and barriers to the development and adoption of generative AI technologies, with one major concern being the creation of false content. These realistic-looking images or videos can mislead people into believing that things never happened. This can lead to the spread and manipulation of disinformation, which is harmful to individuals and society. On the contrary, the demand for generative AI applications in industries such as entertainment, healthcare, engineering, finance, and defense is driven by the growing use of innovative solutions such as super-resolution, text-to-image conversion, and text-to-video conversion. Moreover, the growing application of artificial intelligence is a result of its increased computing power and ability to solve problems in different industrial sectors. Expanding into these industries will provide major lucrative opportunities for the growth of the generative AI market.
The generative AI market is segmented on the basis of component, technology, end user, and region. On the basis of component, the market is bifurcated into software and services. By technology, it is segmented into generative adversarial networks (GANs), transformer, variational autoencoder (VAE), diffusion networks, and retrieval augmented generation. On the basis of end user, it is classified into media & entertainment, BFSI, IT & telecom, healthcare, automotive & transportation, and others. On the basis of region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.
The report analyzes the profiles of key players operating in the generative AI market such as Adobe, Inc., Amazon Web Services, Inc., D-ID, Genie AI Ltd., Google LLC, IBM Corporation, Microsoft Corporation, MOSTLY AI Inc., Rephrase.ai and Synthesia. These players have adopted various strategies to increase their market penetration and strengthen their position in the generative AI market.
Key Benefits for StakeholdersThe study provides in-depth analysis of the global generative AI market along with the current & future trends to illustrate the imminent investment pockets.
Information about key drivers, restrains, & opportunities and their impact analysis on the global generative AI market size are provided in the report.
Porter’s five forces analysis illustrates the potency of buyers and suppliers operating in the industry.
The quantitative analysis of the global generative AI market from 2022 to 2032 is provided to determine the market potential.
Key Market SegmentsBy ComponentSoftware
Service
By TechnologyGenerative Adversarial Networks (GANs)
Transformer
Variational Autoencoder (VAE)
Diffusion Networks
Retrieval Augmented Generation
By End UserMedia and Entertainment
BFSI
IT and Telecom
Healthcare
Automotive and Transportation
Others
By RegionNorth America
U.S.
Canada
Europe
UK
Germany
France
Italy
Spain
Rest of Europe
Asia-Pacific
China
Japan
India
Australia
South Korea
Rest of Asia-Pacific
LAMEA
Latin America
Middle East
Africa
Key Market Players
Adobe.
Amazon Web Services, Inc.
D-ID
Genie AI Ltd.
Google LLC
IBM Corporation
Microsoft Corporation
MOSTLY AI Inc.
Rephrase.ai
Synthesia
Please Note: It will take 7-10 business days to complete the report upon order confirmation.