Global Computing Platform for Automated Driving Market Size, Manufacturers, Growth Analysis Industry Forecast to 2030

Global Computing Platform for Automated Driving Market Size, Manufacturers, Growth Analysis Industry Forecast to 2030


Summary

According to APO Research, The global Computing Platform for Automated Driving market is projected to grow from US$ million in 2024 to US$ million by 2030, at a Compound Annual Growth Rate (CAGR) of % during the forecast period.

North American market for Computing Platform for Automated Driving is estimated to increase from $ million in 2024 to reach $ million by 2030, at a CAGR of % during the forecast period of 2025 through 2030.

Asia-Pacific market for Computing Platform for Automated Driving is estimated to increase from $ million in 2024 to reach $ million by 2030, at a CAGR of % during the forecast period of 2025 through 2030.

The China market for Computing Platform for Automated Driving is estimated to increase from $ million in 2024 to reach $ million by 2030, at a CAGR of % during the forecast period of 2025 through 2030.

Europe market for Computing Platform for Automated Driving is estimated to increase from $ million in 2024 to reach $ million by 2030, at a CAGR of % during the forecast period of 2025 through 2030.

The major global companies of Computing Platform for Automated Driving include Baidu, Tesla, NVIDIA, Bosch, Continental, Huawei, Qualcomm and Horizon, etc. In 2023, the world's top three vendors accounted for approximately % of the revenue.

This report presents an overview of global market for Computing Platform for Automated Driving, revenue and gross margin. Analyses of the global market trends, with historic market revenue for 2019 - 2023, estimates for 2024, and projections of CAGR through 2030.

This report researches the key producers of Computing Platform for Automated Driving, also provides the value of main regions and countries. Of the upcoming market potential for Computing Platform for Automated Driving, and key regions or countries of focus to forecast this market into various segments and sub-segments. Country specific data and market value analysis for the U.S., Canada, Mexico, Brazil, China, Japan, South Korea, Southeast Asia, India, Germany, the U.K., Italy, Middle East, Africa, and Other Countries.

This report focuses on the Computing Platform for Automated Driving revenue, market share and industry ranking of main companies, data from 2019 to 2024. Identification of the major stakeholders in the global Computing Platform for Automated Driving market, and analysis of their competitive landscape and market positioning based on recent developments and segmental revenues. This report will help stakeholders to understand the competitive landscape and gain more insights and position their businesses and market strategies in a better way.

All companies have demonstrated varying levels of sales growth and profitability over the past six years, while some companies have experienced consistent growth, others have shown fluctuations in performance. The overall trend suggests a positive outlook for the global Computing Platform for Automated Driving company landscape, with companies adapting to market dynamics and maintaining profitability amidst changing conditions.
Computing Platform for Automated Driving segment by Company

Baidu
Tesla
NVIDIA
Bosch
Continental
Huawei
Qualcomm
Horizon
Computing Platform for Automated Driving segment by Type

Software
Hardware
Computing Platform for Automated Driving segment by Application

L1/L2 Automatic Driving
L3 Automatic Driving
Other
Computing Platform for Automated Driving segment by Region

North America
United States
Canada
Europe
Germany
France
U.K.
Italy
Netherlands
Asia-Pacific
China
Japan
South Korea
India
Australia
China Taiwan
Southeast Asia
Latin America
Mexico
Brazil
Argentina
Middle East & Africa
Turkey
Saudi Arabia
UAE

Study Objectives

1. To analyze and research the global Computing Platform for Automated Driving status and future forecast, involving, revenue, growth rate (CAGR), market share, historical and forecast.
2. To present the Computing Platform for Automated Driving key companies, revenue, market share, and recent developments.
3. To split the Computing Platform for Automated Driving breakdown data by regions, type, companies, and application.
4. To analyze the global and key regions Computing Platform for Automated Driving market potential and advantage, opportunity and challenge, restraints, and risks.
5. To identify Computing Platform for Automated Driving significant trends, drivers, influence factors in global and regions.
6. To analyze Computing Platform for Automated Driving competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.

Reasons to Buy This Report

1. This report will help the readers to understand the competition within the industries and strategies for the competitive environment to enhance the potential profit. The report also focuses on the competitive landscape of the global Computing Platform for Automated Driving market, and introduces in detail the market share, industry ranking, competitor ecosystem, market performance, new product development, operation situation, expansion, and acquisition. etc. of the main players, which helps the readers to identify the main competitors and deeply understand the competition pattern of the market.
2. This report will help stakeholders to understand the global industry status and trends of Computing Platform for Automated Driving and provides them with information on key market drivers, restraints, challenges, and opportunities.
3. This report will help stakeholders to understand competitors better and gain more insights to strengthen their position in their businesses. The competitive landscape section includes the market share and rank (in sales and value), competitor ecosystem, new product development, expansion, and acquisition.
4. This report stays updated with novel technology integration, features, and the latest developments in the market.
5. This report helps stakeholders to gain insights into which regions to target globally.
6. This report helps stakeholders to gain insights into the end-user perception concerning the adoption of Computing Platform for Automated Driving.
7. This report helps stakeholders to identify some of the key players in the market and understand their valuable contribution.

Chapter Outline

Chapter 1: Introduces the report scope of the report, global total market size.
Chapter 2: Analysis key trends, drivers, challenges, and opportunities within the global Computing Platform for Automated Driving industry.
Chapter 3: Detailed analysis of Computing Platform for Automated Driving company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 4: Provides the analysis of various market segments by type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 5: Provides the analysis of various market segments by application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 6: Sales value of Computing Platform for Automated Driving in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of key country in the world.
Chapter 7: Sales value of Computing Platform for Automated Driving in country level. It provides sigmate data by type, and by application for each country/region.
Chapter 8: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including revenue, gross margin, product introduction, recent development, etc.
Chapter 9: Concluding Insights.


1 Market Overview
1.1 Product Definition
1.2 Global Computing Platform for Automated Driving Market Size, 2019 VS 2023 VS 2030
1.3 Global Computing Platform for Automated Driving Market Size (2019-2030)
1.4 Assumptions and Limitations
1.5 Study Goals and Objectives
2 Computing Platform for Automated Driving Market Dynamics
2.1 Computing Platform for Automated Driving Industry Trends
2.2 Computing Platform for Automated Driving Industry Drivers
2.3 Computing Platform for Automated Driving Industry Opportunities and Challenges
2.4 Computing Platform for Automated Driving Industry Restraints
3 Computing Platform for Automated Driving Market by Company
3.1 Global Computing Platform for Automated Driving Company Revenue Ranking in 2023
3.2 Global Computing Platform for Automated Driving Revenue by Company (2019-2024)
3.3 Global Computing Platform for Automated Driving Company Ranking, 2022 VS 2023 VS 2024
3.4 Global Computing Platform for Automated Driving Company Manufacturing Base & Headquarters
3.5 Global Computing Platform for Automated Driving Company, Product Type & Application
3.6 Global Computing Platform for Automated Driving Company Commercialization Time
3.7 Market Competitive Analysis
3.7.1 Global Computing Platform for Automated Driving Market CR5 and HHI
3.7.2 Global Top 5 and 10 Company Market Share by Revenue in 2023
3.7.3 2023 Computing Platform for Automated Driving Tier 1, Tier 2, and Tier
3.8 Mergers & Acquisitions, Expansion
4 Computing Platform for Automated Driving Market by Type
4.1 Computing Platform for Automated Driving Type Introduction
4.1.1 Software
4.1.2 Hardware
4.2 Global Computing Platform for Automated Driving Sales Value by Type
4.2.1 Global Computing Platform for Automated Driving Sales Value by Type (2019 VS 2023 VS 2030)
4.2.2 Global Computing Platform for Automated Driving Sales Value by Type (2019-2030)
4.2.3 Global Computing Platform for Automated Driving Sales Value Share by Type (2019-2030)
5 Computing Platform for Automated Driving Market by Application
5.1 Computing Platform for Automated Driving Application Introduction
5.1.1 L1/L2 Automatic Driving
5.1.2 L3 Automatic Driving
5.1.3 Other
5.2 Global Computing Platform for Automated Driving Sales Value by Application
5.2.1 Global Computing Platform for Automated Driving Sales Value by Application (2019 VS 2023 VS 2030)
5.2.2 Global Computing Platform for Automated Driving Sales Value by Application (2019-2030)
5.2.3 Global Computing Platform for Automated Driving Sales Value Share by Application (2019-2030)
6 Computing Platform for Automated Driving Market by Region
6.1 Global Computing Platform for Automated Driving Sales Value by Region: 2019 VS 2023 VS 2030
6.2 Global Computing Platform for Automated Driving Sales Value by Region (2019-2030)
6.2.1 Global Computing Platform for Automated Driving Sales Value by Region: 2019-2024
6.2.2 Global Computing Platform for Automated Driving Sales Value by Region (2025-2030)
6.3 North America
6.3.1 North America Computing Platform for Automated Driving Sales Value (2019-2030)
6.3.2 North America Computing Platform for Automated Driving Sales Value Share by Country, 2023 VS 2030
6.4 Europe
6.4.1 Europe Computing Platform for Automated Driving Sales Value (2019-2030)
6.4.2 Europe Computing Platform for Automated Driving Sales Value Share by Country, 2023 VS 2030
6.5 Asia-Pacific
6.5.1 Asia-Pacific Computing Platform for Automated Driving Sales Value (2019-2030)
6.5.2 Asia-Pacific Computing Platform for Automated Driving Sales Value Share by Country, 2023 VS 2030
6.6 Latin America
6.6.1 Latin America Computing Platform for Automated Driving Sales Value (2019-2030)
6.6.2 Latin America Computing Platform for Automated Driving Sales Value Share by Country, 2023 VS 2030
6.7 Middle East & Africa
6.7.1 Middle East & Africa Computing Platform for Automated Driving Sales Value (2019-2030)
6.7.2 Middle East & Africa Computing Platform for Automated Driving Sales Value Share by Country, 2023 VS 2030
7 Computing Platform for Automated Driving Market by Country
7.1 Global Computing Platform for Automated Driving Sales Value by Country: 2019 VS 2023 VS 2030
7.2 Global Computing Platform for Automated Driving Sales Value by Country (2019-2030)
7.2.1 Global Computing Platform for Automated Driving Sales Value by Country (2019-2024)
7.2.2 Global Computing Platform for Automated Driving Sales Value by Country (2025-2030)
7.3 USA
7.3.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.3.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.3.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.4 Canada
7.4.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.4.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.4.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.5 Germany
7.5.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.5.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.5.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.6 France
7.6.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.6.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.6.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.7 U.K.
7.7.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.7.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.7.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.8 Italy
7.8.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.8.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.8.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.9 Netherlands
7.9.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.9.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.9.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.10 Nordic Countries
7.10.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.10.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.10.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.11 China
7.11.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.11.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.11.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.12 Japan
7.12.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.12.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.12.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.13 South Korea
7.13.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.13.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.13.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.14 Southeast Asia
7.14.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.14.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.14.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.15 India
7.15.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.15.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.15.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.16 Australia
7.16.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.16.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.16.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.17 Mexico
7.17.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.17.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.17.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.18 Brazil
7.18.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.18.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.18.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.19 Turkey
7.19.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.19.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.19.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.20 Saudi Arabia
7.20.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.20.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.20.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
7.21 UAE
7.21.1 Global Computing Platform for Automated Driving Sales Value Growth Rate (2019-2030)
7.21.2 Global Computing Platform for Automated Driving Sales Value Share by Type, 2023 VS 2030
7.21.3 Global Computing Platform for Automated Driving Sales Value Share by Application, 2023 VS 2030
8 Company Profiles
8.1 Baidu
8.1.1 Baidu Comapny Information
8.1.2 Baidu Business Overview
8.1.3 Baidu Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.1.4 Baidu Computing Platform for Automated Driving Product Portfolio
8.1.5 Baidu Recent Developments
8.2 Tesla
8.2.1 Tesla Comapny Information
8.2.2 Tesla Business Overview
8.2.3 Tesla Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.2.4 Tesla Computing Platform for Automated Driving Product Portfolio
8.2.5 Tesla Recent Developments
8.3 NVIDIA
8.3.1 NVIDIA Comapny Information
8.3.2 NVIDIA Business Overview
8.3.3 NVIDIA Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.3.4 NVIDIA Computing Platform for Automated Driving Product Portfolio
8.3.5 NVIDIA Recent Developments
8.4 Bosch
8.4.1 Bosch Comapny Information
8.4.2 Bosch Business Overview
8.4.3 Bosch Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.4.4 Bosch Computing Platform for Automated Driving Product Portfolio
8.4.5 Bosch Recent Developments
8.5 Continental
8.5.1 Continental Comapny Information
8.5.2 Continental Business Overview
8.5.3 Continental Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.5.4 Continental Computing Platform for Automated Driving Product Portfolio
8.5.5 Continental Recent Developments
8.6 Huawei
8.6.1 Huawei Comapny Information
8.6.2 Huawei Business Overview
8.6.3 Huawei Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.6.4 Huawei Computing Platform for Automated Driving Product Portfolio
8.6.5 Huawei Recent Developments
8.7 Qualcomm
8.7.1 Qualcomm Comapny Information
8.7.2 Qualcomm Business Overview
8.7.3 Qualcomm Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.7.4 Qualcomm Computing Platform for Automated Driving Product Portfolio
8.7.5 Qualcomm Recent Developments
8.8 Horizon
8.8.1 Horizon Comapny Information
8.8.2 Horizon Business Overview
8.8.3 Horizon Computing Platform for Automated Driving Revenue and Gross Margin (2019-2024)
8.8.4 Horizon Computing Platform for Automated Driving Product Portfolio
8.8.5 Horizon Recent Developments
9 Concluding Insights
10 Appendix
10.1 Reasons for Doing This Study
10.2 Research Methodology
10.3 Research Process
10.4 Authors List of This Report
10.5 Data Source
10.5.1 Secondary Sources
10.5.2 Primary Sources

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings