Synthetic Data Generation Market by Component (Services, Software), Data Type (Image & Video Data, Tabular Data, Text Data), Application, End-User - Global Forecast 2024-2030

Synthetic Data Generation Market by Component (Services, Software), Data Type (Image & Video Data, Tabular Data, Text Data), Application, End-User - Global Forecast 2024-2030


The Synthetic Data Generation Market size was estimated at USD 681.25 million in 2023 and expected to reach USD 904.22 million in 2024, at a CAGR 35.02% to reach USD 5,575.37 million by 2030.

Synthetic data generation includes creating artificially generated data that mimics real-world datasets while preserving privacy, security, and integrity. This technology has applications across various industries, including finance, healthcare, retail, and transportation. The generated synthetic data is primarily used for training machine learning models, software testing, and simulating scenarios for better decision-making. The increasing demand for data-driven insights and artificial intelligence (AI) applications has propelled the growth of the synthetic data generation market. With an ever-increasing amount of digital information being produced daily by individuals and businesses globally, there is a growing need to protect sensitive information. Furthermore, organizations are leveraging synthetic data to overcome the limitations associated with traditional methods of dataset acquisition, such as time-consuming manual annotation and expensive third-party sources. The lack of standardized methodologies and tools for evaluating the quality of generated synthetic datasets hampers market growth. Growing advancements in AI technologies, which accelerate the development of more sophisticated synthetic data generation, are expected to create opportunities for market growth.

Regional Insights

The surge in technological advancements related to artificial intelligence (AI), the Internet of things (IoT), and blockchain technologies, consumers in the Americas are increasingly demanding products that offer seamless connectivity and enhanced user experiences is expected to create a platform for market growth in the Americas. Research and innovation investments in EU countries towards technologies that drive sustainability, digital transformation, and smart cities are expanding the usage of synthetic data generation solutions in Europe. Growing advancements in solar power technologies, desalination methods, and sustainable infrastructure solutions in China, India, Australia, and Japan are expected to create a platform for the synthetic data generation market in Asia-Pacific.

Market Insights

Market Dynamics

The market dynamics represent an ever-changing landscape of the Synthetic Data Generation Market by providing actionable insights into factors, including supply and demand levels. Accounting for these factors helps design strategies, make investments, and formulate developments to capitalize on future opportunities. In addition, these factors assist in avoiding potential pitfalls related to political, geographical, technical, social, and economic conditions, highlighting consumer behaviors and influencing manufacturing costs and purchasing decisions.

Market Drivers
  • Expansion of advanced technologies, including artificial intelligence and machine learning
  • Increase in digitalization transformation across enterprises.
Market Restraints
  • High cost associated with synthetic data generation
Market Opportunities
  • Growing deployment of large language models
  • Rise in demand for connected devices and IoT
Market Challenges
  • Lack of skilled workforce
Market Segmentation Analysis
  • Component: Preference for software solutions that offer more flexibility for organizations seeking targeted data generation techniques
  • Data Type: Expanding usage of tabular data synthesis that focuses on preserving statistical properties
  • Application: Rising usage for AI/ML training & development which improves decision-making through insightful graphical representations
  • End-Use: Increasing usage across the government & defense sector due to its ability to address privacy regulation challenges
Market Disruption Analysis
  • Porter’s Five Forces Analysis
  • Value Chain & Critical Path Analysis
  • Pricing Analysis
  • Technology Analysis
  • Patent Analysis
  • Trade Analysis
  • Regulatory Framework Analysis
FPNV Positioning Matrix

The FPNV positioning matrix is essential in evaluating the market positioning of the vendors in the Synthetic Data Generation Market. This matrix offers a comprehensive assessment of vendors, examining critical metrics related to business strategy and product satisfaction. This in-depth assessment empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success, namely Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The market share analysis is a comprehensive tool that provides an insightful and in-depth assessment of the current state of vendors in the Synthetic Data Generation Market. By meticulously comparing and analyzing vendor contributions, companies are offered a greater understanding of their performance and the challenges they face when competing for market share. These contributions include overall revenue, customer base, and other vital metrics. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With these illustrative details, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Recent Developments

IBM Advances watsonx AI and Data Platform with Tech Preview for watsonx.governance and Planned Release of New Models and Generative AI in watsonx.data

International Business Machines Corporation launched new capabilities for the Watsonx platform, which is their AI and data platform. One of the upcoming features is the first iteration of Watsonx's Tuning Studio, which includes prompt tuning. This feature is set to be available in the third quarter of 2023. Additionally, IBM has recently introduced the Synthetic Data Generator, a tool designed to facilitate the creation of artificial tabular data sets. This tool enables users to generate synthetic data from custom data schemas or internal datasets, reducing the risk and time to market. The Synthetic Data Generator is already available for use. These updates from IBM signify their commitment to advancing their AI and data platform, providing users with enhanced capabilities and improved data generation options.

Tech Mahindra and Anyverse Partner to Accelerate AI Adoption in the Automotive Industry

Tech Mahindra, a digital transformation solutions provider, partnered with Anyverse in order to accelerate the adoption of AI in the automotive industry. The partnership aims to simplify the utilization of synthetic data for the development of AI systems. This collaboration enables the automotive industry to leverage advanced synthetic data generation technologies, thereby facilitating the development and testing of AI systems more efficiently. By streamlining the use of synthetic data, Tech Mahindra and Anyverse seek to drive innovation and enhance the capabilities of AI in the automotive sector.

Google Cloud partner Synthesized drives data transformations through Generative AI

Synthesized Inc. partnered with Google LLC to make their products available to enterprise customers on the Google Cloud platform. Their AI-driven data transformations offer a quick and efficient way to access high-quality data for various purposes, including BI/Analytics, machine learning, application development, and testing workflows. Their Synthesized Scientific Data Kit (SDK) is now accessible on the Google Marketplace, enabling businesses to enhance their data quality by up to 15%, resulting in increased revenue across multiple areas such as conversion, fraud detection, and revenue recovery. With fast access and lower data acquisition costs, organizations can extract valuable insights from their BI/Analytics efforts more rapidly. Moreover, the SDK significantly boosts developer productivity and accelerates speed-to-market for new solutions.

Strategy Analysis & Recommendation

The strategic analysis is essential for organizations seeking a solid foothold in the global marketplace. Companies are better positioned to make informed decisions that align with their long-term aspirations by thoroughly evaluating their current standing in the Synthetic Data Generation Market. This critical assessment involves a thorough analysis of the organization’s resources, capabilities, and overall performance to identify its core strengths and areas for improvement.

Key Company Profiles

The report delves into recent significant developments in the Synthetic Data Generation Market, highlighting leading vendors and their innovative profiles. These include Amazon Web Services, Inc., Anonos, BetterData Pte Ltd, Capgemini SE, ChipIn, Datagen Platform, Datomize Ltd., Folio3 Software Inc., GenRocket, Inc., Gretel Labs, Hazy Limited, Informatica Inc., International Business Machines Corporation, K2view Ltd., Kroop AI Private Limited, Kymera-labs, MDClone Limited, Microsoft Corporation, MOSTLY AI, SAEC / Kinetic Vision, Inc., Synthesis AI, Synthesized Ltd., Syntho, BV., TonicAI, Inc., and YData Labs Inc..

Market Segmentation & Coverage

This research report categorizes the Synthetic Data Generation Market to forecast the revenues and analyze trends in each of the following sub-markets:

Component
  • Services
  • Software
  • Data Type
    • Image & Video Data
    • Tabular Data
    • Text Data
    Application
    • AI/ML Training & Development
    • Data Analytics & Visualization
    • Enterprise Data Sharing
    • Test Data Management
    • End-User
    • Automotive
    • Banking & Finance
    • Government & Defense
    • Healthcare & Lifesciences
    • Logistics & Transportation
    • Manufacturing
    • Retail
    • Telecommunication & IT
    Region
    • Americas
    • Argentina
    • Brazil
    • Canada
    • Mexico
    • United States
    • California
    • Florida
    • Illinois
    • New York
    • Ohio
    • Pennsylvania
    • Texas
    • Asia-Pacific
    • Australia
    • China
    • India
    • Indonesia
    • Japan
    • Malaysia
    • Philippines
    • Singapore
    • South Korea
    • Taiwan
    • Thailand
    • Vietnam
    • Europe, Middle East & Africa
    • Denmark
    • Egypt
    • Finland
    • France
    • Germany
    • Israel
    • Italy
    • Netherlands
    • Nigeria
    • Norway
    • Poland
    • Qatar
    • Russia
    • Saudi Arabia
    • South Africa
    • Spain
    • Sweden
    • Switzerland
    • Turkey
    • United Arab Emirates
    • United Kingdom


    Please Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Expansion of advanced technologies, including artificial intelligence and machine learning
5.1.1.2. Increase in digitalization transformation across enterprises.
5.1.2. Restraints
5.1.2.1. High cost associated with synthetic data generation
5.1.3. Opportunities
5.1.3.1. Growing deployment of large language models
5.1.3.2. Rise in demand for connected devices and IoT
5.1.4. Challenges
5.1.4.1. Lack of skilled workforce
5.2. Market Segmentation Analysis
5.2.1. Component: Preference for software solutions that offer more flexibility for organizations seeking targeted data generation techniques
5.2.2. Data Type: Expanding usage of tabular data synthesis that focuses on preserving statistical properties
5.2.3. Application: Rising usage for AI/ML training & development which improves decision-making through insightful graphical representations
5.2.4. End-Use: Increasing usage across the government & defense sector due to its ability to address privacy regulation challenges
5.3. Market Disruption Analysis
5.4. Porter’s Five Forces Analysis
5.4.1. Threat of New Entrants
5.4.2. Threat of Substitutes
5.4.3. Bargaining Power of Customers
5.4.4. Bargaining Power of Suppliers
5.4.5. Industry Rivalry
5.5. Value Chain & Critical Path Analysis
5.6. Pricing Analysis
5.7. Technology Analysis
5.8. Patent Analysis
5.9. Trade Analysis
5.10. Regulatory Framework Analysis
6. Synthetic Data Generation Market, by Component
6.1. Introduction
6.2. Services
6.3. Software
7. Synthetic Data Generation Market, by Data Type
7.1. Introduction
7.2. Image & Video Data
7.3. Tabular Data
7.4. Text Data
8. Synthetic Data Generation Market, by Application
8.1. Introduction
8.2. AI/ML Training & Development
8.3. Data Analytics & Visualization
8.4. Enterprise Data Sharing
8.5. Test Data Management
9. Synthetic Data Generation Market, by End-User
9.1. Introduction
9.2. Automotive
9.3. Banking & Finance
9.4. Government & Defense
9.5. Healthcare & Lifesciences
9.6. Logistics & Transportation
9.7. Manufacturing
9.8. Retail
9.9. Telecommunication & IT
10. Americas Synthetic Data Generation Market
10.1. Introduction
10.2. Argentina
10.3. Brazil
10.4. Canada
10.5. Mexico
10.6. United States
11. Asia-Pacific Synthetic Data Generation Market
11.1. Introduction
11.2. Australia
11.3. China
11.4. India
11.5. Indonesia
11.6. Japan
11.7. Malaysia
11.8. Philippines
11.9. Singapore
11.10. South Korea
11.11. Taiwan
11.12. Thailand
11.13. Vietnam
12. Europe, Middle East & Africa Synthetic Data Generation Market
12.1. Introduction
12.2. Denmark
12.3. Egypt
12.4. Finland
12.5. France
12.6. Germany
12.7. Israel
12.8. Italy
12.9. Netherlands
12.10. Nigeria
12.11. Norway
12.12. Poland
12.13. Qatar
12.14. Russia
12.15. Saudi Arabia
12.16. South Africa
12.17. Spain
12.18. Sweden
12.19. Switzerland
12.20. Turkey
12.21. United Arab Emirates
12.22. United Kingdom
13. Competitive Landscape
13.1. Market Share Analysis, 2023
13.2. FPNV Positioning Matrix, 2023
13.3. Competitive Scenario Analysis
13.3.1. IBM Advances watsonx AI and Data Platform with Tech Preview for watsonx.governance and Planned Release of New Models and Generative AI in watsonx.data
13.3.2. Tech Mahindra and Anyverse Partner to Accelerate AI Adoption in the Automotive Industry
13.3.3. Google Cloud partner Synthesized drives data transformations through Generative AI
13.4. Strategy Analysis & Recommendation
14. Competitive Portfolio
14.1. Key Company Profiles
14.2. Key Product Portfolio

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings