Synthetic Data Generation Market by Component (Services, Software), Data Type (Image & Video Data, Tabular Data, Text Data), Application, End-User - Global Forecast 2024-2030


Attention: There is an updated edition available for this report.

Synthetic Data Generation Market by Component (Services, Software), Data Type (Image & Video Data, Tabular Data, Text Data), Application, End-User - Global Forecast 2024-2030


The Synthetic Data Generation Market size was estimated at USD 681.25 million in 2023 and expected to reach USD 904.22 million in 2024, at a CAGR 35.02% to reach USD 5,575.37 million by 2030.

Global Synthetic Data Generation Market

Synthetic data generation includes creating artificially generated data that mimics real-world datasets while preserving privacy, security, and integrity. This technology has applications across various industries, including finance, healthcare, retail, and transportation. The generated synthetic data is primarily used for training machine learning models, software testing, and simulating scenarios for better decision-making. The increasing demand for data-driven insights and artificial intelligence (AI) applications has propelled the growth of the synthetic data generation market. With an ever-increasing amount of digital information being produced daily by individuals and businesses globally, there is a growing need to protect sensitive information. Furthermore, organizations are leveraging synthetic data to overcome the limitations associated with traditional methods of dataset acquisition, such as time-consuming manual annotation and expensive third-party sources. The lack of standardized methodologies and tools for evaluating the quality of generated synthetic datasets hampers market growth. Growing advancements in AI technologies, which accelerate the development of more sophisticated synthetic data generation, are expected to create opportunities for market growth.

Regional Insights

The surge in technological advancements related to artificial intelligence (AI), the Internet of things (IoT), and blockchain technologies, consumers in the Americas are increasingly demanding products that offer seamless connectivity and enhanced user experiences is expected to create a platform for market growth in the Americas. Research and innovation investments in EU countries towards technologies that drive sustainability, digital transformation, and smart cities are expanding the usage of synthetic data generation solutions in Europe. Growing advancements in solar power technologies, desalination methods, and sustainable infrastructure solutions in China, India, Australia, and Japan are expected to create a platform for the synthetic data generation market in Asia-Pacific.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the Synthetic Data Generation Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Synthetic Data Generation Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the Synthetic Data Generation Market, highlighting leading vendors and their innovative profiles. These include Amazon Web Services, Inc., Anonos, BetterData Pte Ltd, Capgemini SE, ChipIn, Datagen Platform, Datomize Ltd., Folio3 Software Inc., GenRocket, Inc., Gretel Labs, Hazy Limited, Informatica Inc., International Business Machines Corporation, K2view Ltd., Kroop AI Private Limited, Kymera-labs, MDClone Limited, Microsoft Corporation, MOSTLY AI, SAEC / Kinetic Vision, Inc., Synthesis AI, Synthesized Ltd., Syntho, BV., TonicAI, Inc., and YData Labs Inc..

Market Segmentation & Coverage

This research report categorizes the Synthetic Data Generation Market to forecast the revenues and analyze trends in each of the following sub-markets:

Component
Services
Software
Data Type
Image & Video Data
Tabular Data
Text Data
Application
AI/ML Training & Development
Data Analytics & Visualization
Enterprise Data Sharing
Test Data Management
End-User
Automotive
Banking & Finance
Government & Defense
Healthcare & Lifesciences
Logistics & Transportation
Manufacturing
Retail
Telecommunication & IT
Region
Americas
Argentina
Brazil
Canada
Mexico
United States
California
Florida
Illinois
New York
Ohio
Pennsylvania
Texas
Asia-Pacific
Australia
China
India
Indonesia
Japan
Malaysia
Philippines
Singapore
South Korea
Taiwan
Thailand
Vietnam
Europe, Middle East & Africa
Denmark
Egypt
Finland
France
Germany
Israel
Italy
Netherlands
Nigeria
Norway
Poland
Qatar
Russia
Saudi Arabia
South Africa
Spain
Sweden
Switzerland
Turkey
United Arab Emirates
United Kingdom

The report offers valuable insights on the following aspects:

1. Market Penetration: It presents comprehensive information on the market provided by key players.
2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.
3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.
4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.
5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

1. What is the market size and forecast of the Synthetic Data Generation Market?
2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Synthetic Data Generation Market?
3. What are the technology trends and regulatory frameworks in the Synthetic Data Generation Market?
4. What is the market share of the leading vendors in the Synthetic Data Generation Market?
5. Which modes and strategic moves are suitable for entering the Synthetic Data Generation Market?

Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Limitations
1.7. Assumptions
1.8. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
4.1. Introduction
4.2. Synthetic Data Generation Market, by Region
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Expansion of advanced technologies, including artificial intelligence and machine learning
5.1.1.2. Increase in digitalization transformation across enterprises.
5.1.2. Restraints
5.1.2.1. High cost associated with synthetic data generation
5.1.3. Opportunities
5.1.3.1. Growing deployment of large language models
5.1.3.2. Rise in demand for connected devices and IoT
5.1.4. Challenges
5.1.4.1. Lack of skilled workforce
5.2. Market Segmentation Analysis
5.2.1. Component: Preference for software solutions that offer more flexibility for organizations seeking targeted data generation techniques
5.2.2. Data Type: Expanding usage of tabular data synthesis that focuses on preserving statistical properties
5.2.3. Application: Rising usage for AI/ML training & development which improves decision-making through insightful graphical representations
5.2.4. End-Use: Increasing usage across the government & defense sector due to its ability to address privacy regulation challenges
5.3. Market Trend Analysis
5.4. Cumulative Impact of High Inflation
5.5. Porter’s Five Forces Analysis
5.5.1. Threat of New Entrants
5.5.2. Threat of Substitutes
5.5.3. Bargaining Power of Customers
5.5.4. Bargaining Power of Suppliers
5.5.5. Industry Rivalry
5.6. Value Chain & Critical Path Analysis
5.7. Regulatory Framework
6. Synthetic Data Generation Market, by Component
6.1. Introduction
6.2. Services
6.3. Software
7. Synthetic Data Generation Market, by Data Type
7.1. Introduction
7.2. Image & Video Data
7.3. Tabular Data
7.4. Text Data
8. Synthetic Data Generation Market, by Application
8.1. Introduction
8.2. AI/ML Training & Development
8.3. Data Analytics & Visualization
8.4. Enterprise Data Sharing
8.5. Test Data Management
9. Synthetic Data Generation Market, by End-User
9.1. Introduction
9.2. Automotive
9.3. Banking & Finance
9.4. Government & Defense
9.5. Healthcare & Lifesciences
9.6. Logistics & Transportation
9.7. Manufacturing
9.8. Retail
9.9. Telecommunication & IT
10. Americas Synthetic Data Generation Market
10.1. Introduction
10.2. Argentina
10.3. Brazil
10.4. Canada
10.5. Mexico
10.6. United States
11. Asia-Pacific Synthetic Data Generation Market
11.1. Introduction
11.2. Australia
11.3. China
11.4. India
11.5. Indonesia
11.6. Japan
11.7. Malaysia
11.8. Philippines
11.9. Singapore
11.10. South Korea
11.11. Taiwan
11.12. Thailand
11.13. Vietnam
12. Europe, Middle East & Africa Synthetic Data Generation Market
12.1. Introduction
12.2. Denmark
12.3. Egypt
12.4. Finland
12.5. France
12.6. Germany
12.7. Israel
12.8. Italy
12.9. Netherlands
12.10. Nigeria
12.11. Norway
12.12. Poland
12.13. Qatar
12.14. Russia
12.15. Saudi Arabia
12.16. South Africa
12.17. Spain
12.18. Sweden
12.19. Switzerland
12.20. Turkey
12.21. United Arab Emirates
12.22. United Kingdom
13. Competitive Landscape
13.1. FPNV Positioning Matrix
13.2. Market Share Analysis, By Key Player
13.3. Competitive Scenario Analysis, By Key Player
13.3.1. Agreement, Collaboration, & Partnership
13.3.1.1. Tech Mahindra and Anyverse Partner to Accelerate AI Adoption in the Automotive Industry
13.3.1.2. Google Cloud partner Synthesized drives data transformations through Generative AI
13.3.2. New Product Launch & Enhancement
13.3.2.1. IBM Advances watsonx AI and Data Platform with Tech Preview for watsonx.governance and Planned Release of New Models and Generative AI in watsonx.data
14. Competitive Portfolio
14.1. Key Company Profiles
14.1.1. Amazon Web Services, Inc.
14.1.2. Anonos
14.1.3. BetterData Pte Ltd
14.1.4. Capgemini SE
14.1.5. ChipIn
14.1.6. Datagen Platform
14.1.7. Datomize Ltd.
14.1.8. Folio3 Software Inc.
14.1.9. GenRocket, Inc.
14.1.10. Gretel Labs
14.1.11. Hazy Limited
14.1.12. Informatica Inc.
14.1.13. International Business Machines Corporation
14.1.14. K2view Ltd.
14.1.15. Kroop AI Private Limited
14.1.16. Kymera-labs
14.1.17. MDClone Limited
14.1.18. Microsoft Corporation
14.1.19. MOSTLY AI
14.1.20. SAEC / Kinetic Vision, Inc.
14.1.21. Synthesis AI
14.1.22. Synthesized Ltd.
14.1.23. Syntho, BV.
14.1.24. TonicAI, Inc.
14.1.25. YData Labs Inc.
14.2. Key Product Portfolio
15. Appendix
15.1. Discussion Guide
15.2. License & Pricing
FIGURE 1. SYNTHETIC DATA GENERATION MARKET RESEARCH PROCESS
FIGURE 2. SYNTHETIC DATA GENERATION MARKET SIZE, 2023 VS 2030
FIGURE 3. SYNTHETIC DATA GENERATION MARKET SIZE, 2018-2030 (USD MILLION)
FIGURE 4. SYNTHETIC DATA GENERATION MARKET SIZE, BY REGION, 2023 VS 2030 (%)
FIGURE 5. SYNTHETIC DATA GENERATION MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 6. SYNTHETIC DATA GENERATION MARKET DYNAMICS
FIGURE 7. SYNTHETIC DATA GENERATION MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
FIGURE 8. SYNTHETIC DATA GENERATION MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 9. SYNTHETIC DATA GENERATION MARKET SIZE, BY DATA TYPE, 2023 VS 2030 (%)
FIGURE 10. SYNTHETIC DATA GENERATION MARKET SIZE, BY DATA TYPE, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 11. SYNTHETIC DATA GENERATION MARKET SIZE, BY APPLICATION, 2023 VS 2030 (%)
FIGURE 12. SYNTHETIC DATA GENERATION MARKET SIZE, BY APPLICATION, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 13. SYNTHETIC DATA GENERATION MARKET SIZE, BY END-USER, 2023 VS 2030 (%)
FIGURE 14. SYNTHETIC DATA GENERATION MARKET SIZE, BY END-USER, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 15. AMERICAS SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 16. AMERICAS SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 17. UNITED STATES SYNTHETIC DATA GENERATION MARKET SIZE, BY STATE, 2023 VS 2030 (%)
FIGURE 18. UNITED STATES SYNTHETIC DATA GENERATION MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 19. ASIA-PACIFIC SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 20. ASIA-PACIFIC SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 21. EUROPE, MIDDLE EAST & AFRICA SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 22. EUROPE, MIDDLE EAST & AFRICA SYNTHETIC DATA GENERATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 23. SYNTHETIC DATA GENERATION MARKET, FPNV POSITIONING MATRIX, 2023
FIGURE 24. SYNTHETIC DATA GENERATION MARKET SHARE, BY KEY PLAYER, 2023

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings