Predictive Maintenance Market by Component (Services, Solutions), Deployment (On-Cloud, On-Premise), Application, Organization Size, End-User - Global Forecast 2024-2030

Predictive Maintenance Market by Component (Services, Solutions), Deployment (On-Cloud, On-Premise), Application, Organization Size, End-User - Global Forecast 2024-2030


The Predictive Maintenance Market size was estimated at USD 10.64 billion in 2023 and expected to reach USD 13.09 billion in 2024, at a CAGR 24.02% to reach USD 48.07 billion by 2030.

Predictive maintenance involves using intelligent connected technologies to predict and prevent equipment downtime due to failures. The operating condition of critical plant systems is obtained using the most cost-effective methods, such as vibration monitoring, thermography, and tribology, and all maintenance activities are then scheduled based on this actual data as needed. Predictive maintenance optimizes the availability of process equipment and significantly lowers maintenance costs when incorporated into an extensive maintenance management program. Increasing spending on automating and mechanizing industrial processes with Industry 4.0, coupled with rising safety standards enforced by governments in different countries, encourages predictive maintenance. Real-time monitoring and asset-tracking technologies are also being continuously deployed. On the contrary, high costs and complexity of integration and execution, and concern over data security and privacy, impedes their adoption. However, AI, IoT, and inspection technology integration to improve predictive maintenance and digital twin-based predictive maintenance systems' emergence and development are expected to proliferate their utilization in the coming years.

Regional Insights

In the Americas, particularly in the United States and Canada, predictive maintenance technologies are significantly adopted across various industries, such as manufacturing, energy, and transportation. The market growth is fueled by the presence of major technology providers and a strong focus on innovation and adopting Internet of Things (IoT) solutions for real-time monitoring and analysis. The Asia-Pacific region showcases rapid growth in the predictive maintenance market, primarily due to the expanding manufacturing sector in countries including China, India, and Japan. There's a growing awareness among businesses in the region about the benefits of using predictive maintenance tools for reducing downtime and increasing productivity. In addition, governments in the region are promoting digital transformation and the usage of advanced technologies in industries, further propelling predictive maintenance market growth. The adoption of IoT and advancements in artificial intelligence (AI) and machine learning (ML) are key factors driving the predictive maintenance market in the Asia-Pacific region. In the EMEA region, Europe showcases rapid adoption of predictive maintenance solutions, especially in countries such as Germany, the UK, and France. The region's emphasis on sustainability and efficiency has also increased the adoption of predictive maintenance technologies. In the Middle East and Africa, the market is emerging and showcases promising growth potential, especially in the oil & gas sector, where predictive maintenance can be crucial in optimizing operations and reducing environmental impacts.

Market Insights

Market Dynamics

The market dynamics represent an ever-changing landscape of the Predictive Maintenance Market by providing actionable insights into factors, including supply and demand levels. Accounting for these factors helps design strategies, make investments, and formulate developments to capitalize on future opportunities. In addition, these factors assist in avoiding potential pitfalls related to political, geographical, technical, social, and economic conditions, highlighting consumer behaviors and influencing manufacturing costs and purchasing decisions.

Market Drivers

Rising investments in mechanizing and automating production lines with Industry 4.0
Ongoing deployment of asset tracking and real-time monitoring technologies
Increasing safety regulations imposed by government agencies across economies

Market Restraints

Complexities and costs associated with integration and implementation

Market Opportunities

Improvements in predictive maintenance through integration of AI, IoT, and inspection technologies
Emergence and development of digital twin-based predictive maintenance systems

Market Challenges

Concerns looming around data security and privacy

Market Segmentation Analysis

Component: Rising demand for predictive maintenance solutions due to their ability to significantly reduce unexpected machinery breakdowns
End-User: Rising adoption in the automotive & transportation sector to ensure vehicles and transport systems operate efficiently and safely.

Market Disruption Analysis

Porter’s Five Forces Analysis
Value Chain & Critical Path Analysis
Pricing Analysis
Technology Analysis
Patent Analysis
Trade Analysis
Regulatory Framework Analysis

FPNV Positioning Matrix

The FPNV positioning matrix is essential in evaluating the market positioning of the vendors in the Predictive Maintenance Market. This matrix offers a comprehensive assessment of vendors, examining critical metrics related to business strategy and product satisfaction. This in-depth assessment empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success, namely Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The market share analysis is a comprehensive tool that provides an insightful and in-depth assessment of the current state of vendors in the Predictive Maintenance Market. By meticulously comparing and analyzing vendor contributions, companies are offered a greater understanding of their performance and the challenges they face when competing for market share. These contributions include overall revenue, customer base, and other vital metrics. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With these illustrative details, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Recent Developments

Infineon Technologies AG partnered with Aurora Labs to bring a new level of safety to predictive maintenance applications for vehicles

Infineon Technologies AG partnered strategically with Aurora Labs, significantly enhancing automotive safety and reliability through predictive maintenance. This partnership integrates Aurora Labs' advanced Line-of-Code Intelligence (LOCI) AI technology with Infineon's sophisticated 32-bit TriCore AURIX TC4x microcontrollers. This integration aims to pioneer unprecedented fault prediction and resolution in automotive systems, ensuring safer and more dependable vehicles.

ONYX Insight Expands Advanced Predictive Maintenance Solutions to Enhance bp Wind Energy's U.S. Operations

ONYX Insight is advancing its partnership with BP Wind Energy, marking a commitment to reinforce the predictive maintenance capabilities across BP's onshore wind farms in the US. Over the next five years, ONYX Insight is set to continue providing cutting-edge engineering solutions, technical support, and analytics services. This enduring partnership underscores the critical role of predictive maintenance technology in ensuring the efficiency and reliability of renewable energy resources.

Aperia Expands Halo Connect for Superior Real-Time Equipment Monitoring

Aperia has expanded the Halo Connect predictive maintenance platform, making it more accessible and user-friendly. The Halo Connect platform allows maintenance teams to stay one step ahead of potential issues, reducing downtime and increasing efficiency by leveraging real-time data from vehicles and equipment.

Strategy Analysis & Recommendation

The strategic analysis is essential for organizations seeking a solid foothold in the global marketplace. Companies are better positioned to make informed decisions that align with their long-term aspirations by thoroughly evaluating their current standing in the Predictive Maintenance Market. This critical assessment involves a thorough analysis of the organization’s resources, capabilities, and overall performance to identify its core strengths and areas for improvement.

Key Company Profiles

The report delves into recent significant developments in the Predictive Maintenance Market, highlighting leading vendors and their innovative profiles. These include Altair Engineering Inc., Amazon Web Services, Inc., Asystom, C3.ai, Inc., Databricks, Inc., DINGO Software Pty. Ltd., Fiix Inc. by Rockwell Automation, Inc., General Electric Company, Hitachi, Ltd., Honeywell International Inc., Infineon Technologies AG, Intel Corporation, International Business Machines Corporation, Limble Solutions, LLC, Micro Focus International PLC by Open Text Corporation, Microsoft Corporation, NVIDIA Corporation, Operational Excellence (OPEX) Group Ltd., Oracle Corporation, Robert Bosch GmbH, SAP SE, Schneider Electric SE, Siemens AG, Software AG, SparkCognition, Inc., Splunk Inc., TIBCO Software Inc. by Cloud Software Group, Inc., TWI Ltd., and Uptake Technologies Inc..

Market Segmentation & Coverage

This research report categorizes the Predictive Maintenance Market to forecast the revenues and analyze trends in each of the following sub-markets:

Component
Services
Managed Services
Professional Services
Consulting
Support & Maintenance
System Integration
Solutions
Integrated
Standalone
Deployment
On-Cloud
On-Premise
Application
Electrical Inspections
Oil Analysis
Thermal Imaging
Ultrasound Emissions
Vibration Analysis
Organization Size
Large Enterprises
Small & Medium-size Enterprises
End-User
Aerospace & Defense
Automotive & Transportation
Banking, Financial Services & Insurance
Building, Construction & Real Estate
Consumer Goods & Retail
Education
Energy & Utilities
Government & Public Sector
Healthcare & Life Sciences
Information Technology & Telecommunication
Manufacturing
Media & Entertainment
Travel & Hospitality
Region
Americas
Argentina
Brazil
Canada
Mexico
United States
California
Florida
Illinois
New York
Ohio
Pennsylvania
Texas
Asia-Pacific
Australia
China
India
Indonesia
Japan
Malaysia
Philippines
Singapore
South Korea
Taiwan
Thailand
Vietnam
Europe, Middle East & Africa
Denmark
Egypt
Finland
France
Germany
Israel
Italy
Netherlands
Nigeria
Norway
Poland
Qatar
Russia
Saudi Arabia
South Africa
Spain
Sweden
Switzerland
Turkey
United Arab Emirates
United Kingdom

Please Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Rising investments in mechanizing and automating production lines with Industry 4.0
5.1.1.2. Ongoing deployment of asset tracking and real-time monitoring technologies
5.1.1.3. Increasing safety regulations imposed by government agencies across economies
5.1.2. Restraints
5.1.2.1. Complexities and costs associated with integration and implementation
5.1.3. Opportunities
5.1.3.1. Improvements in predictive maintenance through integration of AI, IoT, and inspection technologies
5.1.3.2. Emergence and development of digital twin-based predictive maintenance systems
5.1.4. Challenges
5.1.4.1. Concerns looming around data security and privacy
5.2. Market Segmentation Analysis
5.2.1. Component: Rising demand for predictive maintenance solutions due to their ability to significantly reduce unexpected machinery breakdowns
5.2.2. End-User: Rising adoption in the automotive & transportation sector to ensure vehicles and transport systems operate efficiently and safely.
5.3. Market Disruption Analysis
5.4. Porter’s Five Forces Analysis
5.4.1. Threat of New Entrants
5.4.2. Threat of Substitutes
5.4.3. Bargaining Power of Customers
5.4.4. Bargaining Power of Suppliers
5.4.5. Industry Rivalry
5.5. Value Chain & Critical Path Analysis
5.6. Pricing Analysis
5.7. Technology Analysis
5.8. Patent Analysis
5.9. Trade Analysis
5.10. Regulatory Framework Analysis
6. Predictive Maintenance Market, by Component
6.1. Introduction
6.2. Services
6.3. Solutions
7. Predictive Maintenance Market, by Deployment
7.1. Introduction
7.2. On-Cloud
7.3. On-Premise
8. Predictive Maintenance Market, by Application
8.1. Introduction
8.2. Electrical Inspections
8.3. Oil Analysis
8.4. Thermal Imaging
8.5. Ultrasound Emissions
8.6. Vibration Analysis
9. Predictive Maintenance Market, by Organization Size
9.1. Introduction
9.2. Large Enterprises
9.3. Small & Medium-size Enterprises
10. Predictive Maintenance Market, by End-User
10.1. Introduction
10.2. Aerospace & Defense
10.3. Automotive & Transportation
10.4. Banking, Financial Services & Insurance
10.5. Building, Construction & Real Estate
10.6. Consumer Goods & Retail
10.7. Education
10.8. Energy & Utilities
10.9. Government & Public Sector
10.10. Healthcare & Life Sciences
10.11. Information Technology & Telecommunication
10.12. Manufacturing
10.13. Media & Entertainment
10.14. Travel & Hospitality
11. Americas Predictive Maintenance Market
11.1. Introduction
11.2. Argentina
11.3. Brazil
11.4. Canada
11.5. Mexico
11.6. United States
12. Asia-Pacific Predictive Maintenance Market
12.1. Introduction
12.2. Australia
12.3. China
12.4. India
12.5. Indonesia
12.6. Japan
12.7. Malaysia
12.8. Philippines
12.9. Singapore
12.10. South Korea
12.11. Taiwan
12.12. Thailand
12.13. Vietnam
13. Europe, Middle East & Africa Predictive Maintenance Market
13.1. Introduction
13.2. Denmark
13.3. Egypt
13.4. Finland
13.5. France
13.6. Germany
13.7. Israel
13.8. Italy
13.9. Netherlands
13.10. Nigeria
13.11. Norway
13.12. Poland
13.13. Qatar
13.14. Russia
13.15. Saudi Arabia
13.16. South Africa
13.17. Spain
13.18. Sweden
13.19. Switzerland
13.20. Turkey
13.21. United Arab Emirates
13.22. United Kingdom
14. Competitive Landscape
14.1. Market Share Analysis, 2023
14.2. FPNV Positioning Matrix, 2023
14.3. Competitive Scenario Analysis
14.3.1. Infineon Technologies AG partnered with Aurora Labs to bring a new level of safety to predictive maintenance applications for vehicles
14.3.2. ONYX Insight Expands Advanced Predictive Maintenance Solutions to Enhance bp Wind Energy's U.S. Operations
14.3.3. Aperia Expands Halo Connect for Superior Real-Time Equipment Monitoring
14.3.4. Stratio and Freeway Transport's Partnership Enhances Efficiency through Predictive Maintenance
14.3.5. SKFAcquired Presenso, Revolutionizing Predictive Maintenance for Reduced Downtime and Costs
14.3.6. Modelon and iQuant's Digital Twin Solutions Propel Predictive Maintenance
14.3.7. Schaeffler Enhances Predictive Maintenance Capabilities through Strategic Acquisition of Eco-Adapt
14.3.8. Viking Analytics Secures EUR 3 Million in Series A Funding to Fuel Global Expansion
14.3.9. Paprima Industries' Launched IoT-Based Predictive Program to Revolutionize Maintenance Tasks
14.4. Strategy Analysis & Recommendation
15. Competitive Portfolio
15.1. Key Company Profiles
15.2. Key Product Portfolio

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings