Predictive maintenance involves using intelligent connected technologies to predict and prevent equipment downtime due to failures. The operating condition of critical plant systems is obtained using the most cost-effective methods, such as vibration monitoring, thermography, and tribology, and all maintenance activities are then scheduled based on this actual data as needed. Predictive maintenance optimizes the availability of process equipment and significantly lowers maintenance costs when incorporated into an extensive maintenance management program. Increasing spending on automating and mechanizing industrial processes with Industry 4.0, coupled with rising safety standards enforced by governments in different countries, encourages predictive maintenance. Real-time monitoring and asset-tracking technologies are also being continuously deployed. On the contrary, high costs and complexity of integration and execution, and concern over data security and privacy, impedes their adoption. However, AI, IoT, and inspection technology integration to improve predictive maintenance and digital twin-based predictive maintenance systems' emergence and development are expected to proliferate their utilization in the coming years.
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook