Machine Learning Operations Market by Component (Services, Software), Deployment (Cloud, On-Premise), Organization Size, End-User - Global Forecast 2024-2030

Machine Learning Operations Market by Component (Services, Software), Deployment (Cloud, On-Premise), Organization Size, End-User - Global Forecast 2024-2030


The Machine Learning Operations Market size was estimated at USD 3.24 billion in 2023 and expected to reach USD 4.41 billion in 2024, at a CAGR 36.22% to reach USD 28.26 billion by 2030.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the Machine Learning Operations Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Machine Learning Operations Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the Machine Learning Operations Market, highlighting leading vendors and their innovative profiles. These include Addepto Sp. z o. o., Alibaba Cloud International, Allegro Artificial Intelligence Ltd., Amazon Web Services, Inc., Anyscale, Inc., BigML Inc., Canonical Ltd., Dataiku, DataRobot, Inc., Domino Data Lab, Inc., Gathr Data Inc., Google LLC by Alphabet Inc., Grid Dynamics Holdings, Inc., H2O.ai, Inc., Hewlett Packard Enterprise Company, Iguazio Ltd. by McKinsey & Company, International Business Machines Corporation, Microsoft Corporation, Neal Analytics, Neptune Labs, Inc., Neuro Inc., Oracle Corporation, Runai Labs Ltd., SAP SE, SAS Institute Inc., Tredence Analytics Solutions Pvt. Ltd., understandAI GmbH, Valohai, Virtusa Corporation, and Weights and Biases, Inc..

Market Segmentation & Coverage

This research report categorizes the Machine Learning Operations Market to forecast the revenues and analyze trends in each of the following sub-markets:

Component

Services

Software
Deployment

Cloud

On-Premise
Organization Size

Large Enterprises

SMEs
End-User

Aerospace & Defense

Automotive & Transportation

Banking, Financial Services & Insurance

Building, Construction & Real Estate

Consumer Goods & Retail

Education

Energy & Utilities

Government & Public Sector

Healthcare & Life Sciences

Information Technology & Telecommunication

Manufacturing

Media & Entertainment

Travel & Hospitality
Region

Americas
Argentina
Brazil
Canada
Mexico
United States

California

Florida

Illinois

New York

Ohio

Pennsylvania

Texas

Asia-Pacific
Australia
China
India
Indonesia
Japan
Malaysia
Philippines
Singapore
South Korea
Taiwan
Thailand
Vietnam

Europe, Middle East & Africa
Denmark
Egypt
Finland
France
Germany
Israel
Italy
Netherlands
Nigeria
Norway
Poland
Qatar
Russia
Saudi Arabia
South Africa
Spain
Sweden
Switzerland
Turkey
United Arab Emirates
United Kingdom

The report offers valuable insights on the following aspects:

1. Market Penetration: It presents comprehensive information on the market provided by key players.
2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.
3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.
4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.
5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

1. What is the market size and forecast of the Machine Learning Operations Market?
2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Machine Learning Operations Market?
3. What are the technology trends and regulatory frameworks in the Machine Learning Operations Market?
4. What is the market share of the leading vendors in the Machine Learning Operations Market?
5. Which modes and strategic moves are suitable for entering the Machine Learning Operations Market?

Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Limitations
1.7. Assumptions
1.8. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
4.1. Introduction
4.2. Machine Learning Operations Market, by Region
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Increasing utilization of machine learning in the manufacturing sector
5.1.1.2. Government initiatives to digitalize and automate end-user sectors to boost productivity
5.1.1.3. Growing focus on standardization of machine learning processes for better management
5.1.2. Restraints
5.1.2.1. Issues associated with data management due to discrepancies
5.1.3. Opportunities
5.1.3.1. Continuous improvements in machine learning operations and development of new solutions
5.1.3.2. New investments in smart factory and smart manufacturing technologies
5.1.4. Challenges
5.1.4.1. Limited availability of skilled and trained professionals
5.2. Market Segmentation Analysis
5.3. Market Trend Analysis
5.4. Cumulative Impact of High Inflation
5.5. Porter’s Five Forces Analysis
5.5.1. Threat of New Entrants
5.5.2. Threat of Substitutes
5.5.3. Bargaining Power of Customers
5.5.4. Bargaining Power of Suppliers
5.5.5. Industry Rivalry
5.6. Value Chain & Critical Path Analysis
5.7. Regulatory Framework
6. Machine Learning Operations Market, by Component
6.1. Introduction
6.2. Services
6.3. Software
7. Machine Learning Operations Market, by Deployment
7.1. Introduction
7.2. Cloud
7.3. On-Premise
8. Machine Learning Operations Market, by Organization Size
8.1. Introduction
8.2. Large Enterprises
8.3. SMEs
9. Machine Learning Operations Market, by End-User
9.1. Introduction
9.2. Aerospace & Defense
9.3. Automotive & Transportation
9.4. Banking, Financial Services & Insurance
9.5. Building, Construction & Real Estate
9.6. Consumer Goods & Retail
9.7. Education
9.8. Energy & Utilities
9.9. Government & Public Sector
9.10. Healthcare & Life Sciences
9.11. Information Technology & Telecommunication
9.12. Manufacturing
9.13. Media & Entertainment
9.14. Travel & Hospitality
10. Americas Machine Learning Operations Market
10.1. Introduction
10.2. Argentina
10.3. Brazil
10.4. Canada
10.5. Mexico
10.6. United States
11. Asia-Pacific Machine Learning Operations Market
11.1. Introduction
11.2. Australia
11.3. China
11.4. India
11.5. Indonesia
11.6. Japan
11.7. Malaysia
11.8. Philippines
11.9. Singapore
11.10. South Korea
11.11. Taiwan
11.12. Thailand
11.13. Vietnam
12. Europe, Middle East & Africa Machine Learning Operations Market
12.1. Introduction
12.2. Denmark
12.3. Egypt
12.4. Finland
12.5. France
12.6. Germany
12.7. Israel
12.8. Italy
12.9. Netherlands
12.10. Nigeria
12.11. Norway
12.12. Poland
12.13. Qatar
12.14. Russia
12.15. Saudi Arabia
12.16. South Africa
12.17. Spain
12.18. Sweden
12.19. Switzerland
12.20. Turkey
12.21. United Arab Emirates
12.22. United Kingdom
13. Competitive Landscape
13.1. FPNV Positioning Matrix
13.2. Market Share Analysis, By Key Player
13.3. Competitive Scenario Analysis, By Key Player
14. Competitive Portfolio
14.1. Key Company Profiles
14.1.1. Addepto Sp. z o. o.
14.1.2. Alibaba Cloud International
14.1.3. Allegro Artificial Intelligence Ltd.
14.1.4. Amazon Web Services, Inc.
14.1.5. Anyscale, Inc.
14.1.6. BigML Inc.
14.1.7. Canonical Ltd.
14.1.8. Dataiku
14.1.9. DataRobot, Inc.
14.1.10. Domino Data Lab, Inc.
14.1.11. Gathr Data Inc.
14.1.12. Google LLC by Alphabet Inc.
14.1.13. Grid Dynamics Holdings, Inc.
14.1.14. H2O.ai, Inc.
14.1.15. Hewlett Packard Enterprise Company
14.1.16. Iguazio Ltd. by McKinsey & Company
14.1.17. International Business Machines Corporation
14.1.18. Microsoft Corporation
14.1.19. Neal Analytics
14.1.20. Neptune Labs, Inc.
14.1.21. Neuro Inc.
14.1.22. Oracle Corporation
14.1.23. Runai Labs Ltd.
14.1.24. SAP SE
14.1.25. SAS Institute Inc.
14.1.26. Tredence Analytics Solutions Pvt. Ltd.
14.1.27. understandAI GmbH
14.1.28. Valohai
14.1.29. Virtusa Corporation
14.1.30. Weights and Biases, Inc.
14.2. Key Product Portfolio
15. Appendix
15.1. Discussion Guide
15.2. License & Pricing
FIGURE 1. MACHINE LEARNING OPERATIONS MARKET RESEARCH PROCESS
FIGURE 2. MACHINE LEARNING OPERATIONS MARKET SIZE, 2023 VS 2030
FIGURE 3. MACHINE LEARNING OPERATIONS MARKET SIZE, 2018-2030 (USD MILLION)
FIGURE 4. MACHINE LEARNING OPERATIONS MARKET SIZE, BY REGION, 2023 VS 2030 (%)
FIGURE 5. MACHINE LEARNING OPERATIONS MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 6. MACHINE LEARNING OPERATIONS MARKET DYNAMICS
FIGURE 7. MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
FIGURE 8. MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 9. MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2023 VS 2030 (%)
FIGURE 10. MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 11. MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2023 VS 2030 (%)
FIGURE 12. MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 13. MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2023 VS 2030 (%)
FIGURE 14. MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 15. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 16. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 17. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY STATE, 2023 VS 2030 (%)
FIGURE 18. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 19. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 20. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 21. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
FIGURE 22. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
FIGURE 23. MACHINE LEARNING OPERATIONS MARKET, FPNV POSITIONING MATRIX, 2023
FIGURE 24. MACHINE LEARNING OPERATIONS MARKET SHARE, BY KEY PLAYER, 2023

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings