Artificial Intelligence in Pharmaceutical Market by Offering (Hardware, Services, Software), Technology (Computer Vision, Context-Aware Computing, Machine Learning), Applications, End-users - Global Forecast 2024-2030

Artificial Intelligence in Pharmaceutical Market by Offering (Hardware, Services, Software), Technology (Computer Vision, Context-Aware Computing, Machine Learning), Applications, End-users - Global Forecast 2024-2030


The Artificial Intelligence in Pharmaceutical Market size was estimated at USD 16.21 billion in 2023 and expected to reach USD 20.76 billion in 2024, at a CAGR 29.18% to reach USD 97.35 billion by 2030.

Artificial intelligence (AI) in the pharmaceutical market refers to integrating advanced machine learning algorithms, natural language processing, and data analytics technologies into the drug discovery, development, and manufacturing processes of the global pharmaceutical industry. The growing demand for personalized medicine to improve treatment outcomes and advancements in genomics and high-throughput technologies generate large volumes of complex data requiring advanced analytical techniques. However, the limited availability of curated datasets for training machine learning models hinders the adoption of AI in pharmaceuticals. Nevertheless, integrating big data analytics with AI may also facilitate a better understanding of molecular mechanisms underlying various diseases or identify novel biomarkers that could be targets of future drugs; this further creates lucrative opportunities for the market.

Regional Insights

America provides an improved landscape for the AI in pharmaceutical market with an early adoption of advanced technologies and supportive government policies. The United States is home to several leading AI startups leveraging AI for drug discovery, molecular modeling, clinical trials optimization, and personalized medicine. In the U.S., major pharmaceutical firms are partnering with AI-driven startups and investing heavily in research to expedite drug discovery and development. In the European region, countries such as France, Germany, and the United Kingdom have introduced national strategies propelling AI applications across industries, including pharmaceuticals. Although slower in comparison to other regions, Middle Eastern countries are advancing through investment in AI. Africa's potential lies in addressing unique healthcare challenges through its developing pharma ecosystem. The Asia Pacific region showcases significant growth in AI-driven pharmaceutical advancements with China, Japan, and India at the forefront. In addition, increasing public-private investments in pharmaceutical manufacturing infrastructure provides a positive landscape for AI deployments.

Market Insights

Market Dynamics

The market dynamics represent an ever-changing landscape of the Artificial Intelligence in Pharmaceutical Market by providing actionable insights into factors, including supply and demand levels. Accounting for these factors helps design strategies, make investments, and formulate developments to capitalize on future opportunities. In addition, these factors assist in avoiding potential pitfalls related to political, geographical, technical, social, and economic conditions, highlighting consumer behaviors and influencing manufacturing costs and purchasing decisions.

Market Drivers
  • Growing demand for personalized medicine to improve treatment outcomes
  • Utilization of AI-driven approaches to enhance existing drug repurposing strategies
  • Need to enhance processing of biomedical and clinical data
Market Restraints
  • High initial investment for developing and implementing AI solutions
Market Opportunities
  • Introduction of innovative AI-based solutions for pharmaceutical industry
  • Significant investments for AI drug discovery research
Market Challenges
  • Concerns regarding data privacy and security
Market Segmentation Analysis
  • Offerings: Growing AI-based software adoption owing to its improved functionality & features
  • Technology: Increasing utilization of machine learning technology in the pharmaceutical sector
  • Applications: Improving the efficiency of clinical trial process through AI solutions
  • End-users: Significant implementation of AI technologies by pharma & biotech companies for drug discovery & development
Market Disruption Analysis
  • Porter’s Five Forces Analysis
  • Value Chain & Critical Path Analysis
  • Pricing Analysis
  • Technology Analysis
  • Patent Analysis
  • Trade Analysis
  • Regulatory Framework Analysis
FPNV Positioning Matrix

The FPNV positioning matrix is essential in evaluating the market positioning of the vendors in the Artificial Intelligence in Pharmaceutical Market. This matrix offers a comprehensive assessment of vendors, examining critical metrics related to business strategy and product satisfaction. This in-depth assessment empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success, namely Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The market share analysis is a comprehensive tool that provides an insightful and in-depth assessment of the current state of vendors in the Artificial Intelligence in Pharmaceutical Market. By meticulously comparing and analyzing vendor contributions, companies are offered a greater understanding of their performance and the challenges they face when competing for market share. These contributions include overall revenue, customer base, and other vital metrics. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With these illustrative details, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Recent Developments

Merck Enters Two Strategic Collaborations to Strengthen AI-driven Drug Discovery

Merck entered into two new strategic collaborations in the field of drug discovery. These collaborations, with BenevolentAI and Exscientia, aim to utilize Artificial Intelligence (AI)-driven design and discovery capabilities to generate innovative drug candidates for clinical development in areas including oncology, neurology, and immunology.

Launch of Insilico’s Phase II Program Highlights Generative AI Momentum

Insilico Medicine has recently initiated Phase II clinical trials for a groundbreaking drug, INS018_055, developed using generative artificial intelligence in pharmaceuticals. This drug has received Orphan Drug certificate from the FDA and aims to treat idiopathic pulmonary fibrosis (IPF). The utilization of artificial intelligence has significantly accelerated the drug development process for Insilico. Insilico has formed partnerships with several biopharma companies for AI-based drug development projects.

Google Cloud Launches AI-powered Solutions to Safely Accelerate Drug Discovery and Precision Medicine

Google Cloud introduced two AI-powered solutions for the life sciences industry. These solutions aim to enhance drug discovery and precision medicine for biotechnology companies, pharmaceutical firms, and public sector organizations. The first solution called the Target and Lead Identification Suite, helps researchers gain a better understanding of amino acids' function and predict protein structure. The second solution, known as the Multiomics Suite, expedites the discovery and interpretation of genomic data.

Strategy Analysis & Recommendation

The strategic analysis is essential for organizations seeking a solid foothold in the global marketplace. Companies are better positioned to make informed decisions that align with their long-term aspirations by thoroughly evaluating their current standing in the Artificial Intelligence in Pharmaceutical Market. This critical assessment involves a thorough analysis of the organization’s resources, capabilities, and overall performance to identify its core strengths and areas for improvement.

Key Company Profiles

The report delves into recent significant developments in the Artificial Intelligence in Pharmaceutical Market, highlighting leading vendors and their innovative profiles. These include AiCure, LLC, Aspen Technology Inc, Atomwise Inc, BenevolentAI SA, BioSymetrics Inc., BPGbio Inc., Butterfly Network, Inc., Cloud Pharmaceuticals, Inc., CloudMedX Inc., Cyclica Inc, Deargen Inc, Deep Genomics Incorporated, Euretos Services BV, Exscientia plc, Google LLC, Insilico Medicine, Intel Corporation, International Business Machines Corporation, InveniAI LLC, Isomorphic Labs, Microsoft Corporation, Novo Nordisk A/S, Oracle Corporation, Sanofi SA, Turbine Ltd., Viseven Europe OU, and XtalPi Inc..

Market Segmentation & Coverage

This research report categorizes the Artificial Intelligence in Pharmaceutical Market to forecast the revenues and analyze trends in each of the following sub-markets:
  • Offering
  • Hardware
  • Memory
  • Network
  • Processor
  • Services
  • Deployment & Integration
  • Support & Maintenance
  • Software
  • Technology
  • Computer Vision
  • Context-Aware Computing
  • Machine Learning
  • Natural Language Processing
  • Querying Method
  • Applications
  • Clinical Trials
  • Diagnostic Assistance & Personalized Treatment
  • Drug Development & Discovery
  • Manufacturing
  • Marketing
  • End-users
  • Pharma & Biotech Companies
  • Research Institutes
  • Region
  • Americas
  • Argentina
  • Brazil
  • Canada
  • Mexico
  • United States
  • California
  • Florida
  • Illinois
  • New York
  • Ohio
  • Pennsylvania
  • Texas
  • Asia-Pacific
  • Australia
  • China
  • India
  • Indonesia
  • Japan
  • Malaysia
  • Philippines
  • Singapore
  • South Korea
  • Taiwan
  • Thailand
  • Vietnam
  • Europe, Middle East & Africa
  • Denmark
  • Egypt
  • Finland
  • France
  • Germany
  • Israel
  • Italy
  • Netherlands
  • Nigeria
  • Norway
  • Poland
  • Qatar
  • Russia
  • Saudi Arabia
  • South Africa
  • Spain
  • Sweden
  • Switzerland
  • Turkey
  • United Arab Emirates
  • United Kingdom


Please Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Growing demand for personalized medicine to improve treatment outcomes
5.1.1.2. Utilization of AI-driven approaches to enhance existing drug repurposing strategies
5.1.1.3. Need to enhance processing of biomedical and clinical data
5.1.2. Restraints
5.1.2.1. High initial investment for developing and implementing AI solutions
5.1.3. Opportunities
5.1.3.1. Introduction of innovative AI-based solutions for pharmaceutical industry
5.1.3.2. Significant investments for AI drug discovery research
5.1.4. Challenges
5.1.4.1. Concerns regarding data privacy and security
5.2. Market Segmentation Analysis
5.2.1. Offerings: Growing AI-based software adoption owing to its improved functionality & features
5.2.2. Technology: Increasing utilization of machine learning technology in the pharmaceutical sector
5.2.3. Applications: Improving the efficiency of clinical trial process through AI solutions
5.2.4. End-users: Significant implementation of AI technologies by pharma & biotech companies for drug discovery & development
5.3. Market Disruption Analysis
5.4. Porter’s Five Forces Analysis
5.4.1. Threat of New Entrants
5.4.2. Threat of Substitutes
5.4.3. Bargaining Power of Customers
5.4.4. Bargaining Power of Suppliers
5.4.5. Industry Rivalry
5.5. Value Chain & Critical Path Analysis
5.6. Pricing Analysis
5.7. Technology Analysis
5.8. Patent Analysis
5.9. Trade Analysis
5.10. Regulatory Framework Analysis
6. Artificial Intelligence in Pharmaceutical Market, by Offering
6.1. Introduction
6.2. Hardware
6.3. Services
6.4. Software
7. Artificial Intelligence in Pharmaceutical Market, by Technology
7.1. Introduction
7.2. Computer Vision
7.3. Context-Aware Computing
7.4. Machine Learning
7.5. Natural Language Processing
7.6. Querying Method
8. Artificial Intelligence in Pharmaceutical Market, by Applications
8.1. Introduction
8.2. Clinical Trials
8.3. Diagnostic Assistance & Personalized Treatment
8.4. Drug Development & Discovery
8.5. Manufacturing
8.6. Marketing
9. Artificial Intelligence in Pharmaceutical Market, by End-users
9.1. Introduction
9.2. Pharma & Biotech Companies
9.3. Research Institutes
10. Americas Artificial Intelligence in Pharmaceutical Market
10.1. Introduction
10.2. Argentina
10.3. Brazil
10.4. Canada
10.5. Mexico
10.6. United States
11. Asia-Pacific Artificial Intelligence in Pharmaceutical Market
11.1. Introduction
11.2. Australia
11.3. China
11.4. India
11.5. Indonesia
11.6. Japan
11.7. Malaysia
11.8. Philippines
11.9. Singapore
11.10. South Korea
11.11. Taiwan
11.12. Thailand
11.13. Vietnam
12. Europe, Middle East & Africa Artificial Intelligence in Pharmaceutical Market
12.1. Introduction
12.2. Denmark
12.3. Egypt
12.4. Finland
12.5. France
12.6. Germany
12.7. Israel
12.8. Italy
12.9. Netherlands
12.10. Nigeria
12.11. Norway
12.12. Poland
12.13. Qatar
12.14. Russia
12.15. Saudi Arabia
12.16. South Africa
12.17. Spain
12.18. Sweden
12.19. Switzerland
12.20. Turkey
12.21. United Arab Emirates
12.22. United Kingdom
13. Competitive Landscape
13.1. Market Share Analysis, 2023
13.2. FPNV Positioning Matrix, 2023
13.3. Competitive Scenario Analysis
13.3.1. Merck Enters Two Strategic Collaborations to Strengthen AI-driven Drug Discovery
13.3.2. Launch of Insilico’s Phase II Program Highlights Generative AI Momentum
13.3.3. Google Cloud Launches AI-powered Solutions to Safely Accelerate Drug Discovery and Precision Medicine
13.4. Strategy Analysis & Recommendation
14. Competitive Portfolio
14.1. Key Company Profiles
14.2. Key Product Portfolio

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings