AI Edge Computing Market by Component (Hardware, Services, Software), Data Source (Biometric Data, Mobile Data, Sensor Data), Application, End-User - Global Forecast 2024-2030

AI Edge Computing Market by Component (Hardware, Services, Software), Data Source (Biometric Data, Mobile Data, Sensor Data), Application, End-User - Global Forecast 2024-2030


The AI Edge Computing Market size was estimated at USD 22.13 billion in 2023 and expected to reach USD 26.73 billion in 2024, at a CAGR 21.44% to reach USD 86.24 billion by 2030.

The AI edge computing includes the application of artificial intelligence (AI) and machine learning (ML) technologies within edge computing systems. These systems enable real-time processing and analysis of data at the local level rather than relying on centralized cloud-based servers. The market encompasses hardware, software, and services that facilitate efficient processing of large-scale data close to its source, thereby offering enhanced performance, reduced latency, and improved privacy for various end-use applications. Increased IoT device adoption rates and advancement in AI/ML algorithms capable of performing complex tasks at a faster pace with lower power consumption requirements is driving the usage of AI edge computing. Growing demand for low-latency applications, rising concerns about data security & privacy due to stricter regulatory oversight, and increasing focus on Industry 4.0 initiatives amidst various industries globally are creating a platform for AI edge computing. High initial investment costs associated with implementing edge infrastructure and the complexity of integrating multiple data sources from different IoT devices into a coherent system are hampering market growth. The growing development of energy-efficient processors, memory units, and other components specifically designed to handle AI tasks at the edge is expected to create opportunities for market growth.

Regional Insights

In the Americas, North American countries such as the United States and Canada are leading in technological advancements with strong investment in research & development activities. Factors driving growth in this region include higher adoption of IoT devices and increased cloud-based services among businesses. Moreover, there is a rising demand for real-time data processing solutions to improve operational efficiency across various industries such as healthcare and automotive, which further accelerates the adoption of AI edge computing technologies. Europe is currently at the forefront of adopting advanced AI technologies with numerous initiatives undertaken by governments to support research on artificial intelligence across European Union countries. Industry 4.0 enablers are also promoting AI-powered automation solutions in manufacturing sectors, leading to a growing demand for edge computing capabilities. In the Middle East and Africa, although the adoption of AI technologies is still in its nascent stage, high growth potential is anticipated due to increasing government support for digital transformation initiatives and rising investment in smart city projects. The Asia-Pacific region is witnessing a prompt growth rate in the AI edge computing market during the forecast period, owing to rapid industrialization, raised smartphone penetration, and advancements in communication infrastructure. China, Japan, and South Korea are driving strong AI development with government policies supporting research & development activities and focusing on IoT applications across industries. Furthermore, emerging countries such as Australia and Singapore focus on creating smart city frameworks incorporating AI-driven solutions, thus promoting growth opportunities within this sector.

Market Insights

Market Dynamics

The market dynamics represent an ever-changing landscape of the AI Edge Computing Market by providing actionable insights into factors, including supply and demand levels. Accounting for these factors helps design strategies, make investments, and formulate developments to capitalize on future opportunities. In addition, these factors assist in avoiding potential pitfalls related to political, geographical, technical, social, and economic conditions, highlighting consumer behaviors and influencing manufacturing costs and purchasing decisions.

Market Drivers
  • Growing customer inclination toward smart devices
  • Increasing adoption of predictive maintenance in digital infrastructure worldwide
  • Need for cost and operational efficiency in enterprises
Market Restraints
  • Latency issues due to massive data generation
Market Opportunities
  • Investments to integrate AI edge computing in various end-user industries
  • Adoption of AI edge computing in smart cities for intelligent traffic controls and parking communications
Market Challenges
  • Data privacy and security concerns associated with AI Edge computing
Market Segmentation Analysis
  • Component: Expanding usage of software components for real-time analytics
  • Data Source: Increasing demand for mobile data to creat
  • Application:
  • End-User: Growing utilization by IT and telecommunication sector to optimize network operations and enhance customer experience
Market Disruption Analysis
  • Porter’s Five Forces Analysis
  • Value Chain & Critical Path Analysis
  • Pricing Analysis
  • Technology Analysis
  • Patent Analysis
  • Trade Analysis
  • Regulatory Framework Analysis
FPNV Positioning Matrix

The FPNV positioning matrix is essential in evaluating the market positioning of the vendors in the AI Edge Computing Market. This matrix offers a comprehensive assessment of vendors, examining critical metrics related to business strategy and product satisfaction. This in-depth assessment empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success, namely Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The market share analysis is a comprehensive tool that provides an insightful and in-depth assessment of the current state of vendors in the AI Edge Computing Market. By meticulously comparing and analyzing vendor contributions, companies are offered a greater understanding of their performance and the challenges they face when competing for market share. These contributions include overall revenue, customer base, and other vital metrics. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With these illustrative details, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Recent Developments

EdgeCortix Raises USD 20 Million for Technology Development and Global Expansion

EdgeCortix, Inc., a company specializing in edge artificial intelligence solutions, has secured an additional USD 20 million in funding to support the development of their Sakura hardware. The Sakura hardware is a semiconductor device designed specifically for AI applications at the edge. This strategic decision aims to enhance the design and performance capabilities of the EdgeCortix.

Lenovo Delivers AI at the Edge, Bringing Next Generation Intelligence to Data

Lenovo Group Limited has recently introduced new edge AI services and solutions, allowing businesses to deploy remote computing capabilities and accelerate their AI readiness. One of the notable offerings is the Lenovo TruScale for Edge and AI, which provides a pay-as-you-go model for customers to quickly implement robust edge computing solutions and gain valuable AI insights directly at the source of data creation. This transformation enables improved emergency response, public safety, accessibility, and enhanced experiences in the tourism and retail sectors.

Unigen Launches Compact Edge AI Computing Solutions

Unigen Corporation has launched a comprehensive edge AI hardware solution by leveraging its hardware and software capabilities in the context of AI edge computing. The cupcake edge AI server is a compact and rugged enclosure that offers reliable, high-performance, low-latency, and low-power capabilities for machine learning and inference AI. This platform supports neural networks from leading ISV providers, allowing for customized solutions across multiple applications.

Strategy Analysis & Recommendation

The strategic analysis is essential for organizations seeking a solid foothold in the global marketplace. Companies are better positioned to make informed decisions that align with their long-term aspirations by thoroughly evaluating their current standing in the AI Edge Computing Market. This critical assessment involves a thorough analysis of the organization’s resources, capabilities, and overall performance to identify its core strengths and areas for improvement.

Key Company Profiles

The report delves into recent significant developments in the AI Edge Computing Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., ADLINK Technology Inc., Advantech Co., Ltd., Akamai Technologies, Inc., Amazon Web Services, Inc., Atos SE, Broadcom Inc., Cisco Systems, Inc., Cloudera, Inc., Dell Inc., EdgeConneX, Inc., EdgeCortix, Inc., Fastly, Inc., General Electric Company, Hewlett Packard Enterprise Development LP, Honeywell International Inc., Huawei Technologies Co., Ltd., Intel Corporation, International Business Machines Corporation, Lenovo Group Limited, Microsoft Corporation, NVIDIA Corporation, Robert Bosch GmbH, Rockwell Automation, Inc., SAP SE, Schneider Electric SE, Siemens AG, Sterlite Technologies Limited, Tata Elxsi Limited, Teksun Inc., Telefonaktiebolaget LM Ericsson, and Unigen Corporation.

Market Segmentation & Coverage

This research report categorizes the AI Edge Computing Market to forecast the revenues and analyze trends in each of the following sub-markets:
  • Component
  • Hardware
  • Services
  • Software
  • Data Source
  • Biometric Data
  • Mobile Data
  • Sensor Data
  • Application
  • Access Management
  • Autonomous Vehicles
  • Energy Management
  • Remote Monitoring & Predictive Maintenance
  • Telemetry
  • Video Surveillance
  • End-User
  • Automotive
  • Energy & Utilities
  • Government & Public
  • Healthcare
  • IT & Telecom
  • Manufacturing
  • Region
  • Americas
  • Argentina
  • Brazil
  • Canada
  • Mexico
  • United States
  • California
  • Florida
  • Illinois
  • New York
  • Ohio
  • Pennsylvania
  • Texas
  • Asia-Pacific
  • Australia
  • China
  • India
  • Indonesia
  • Japan
  • Malaysia
  • Philippines
  • Singapore
  • South Korea
  • Taiwan
  • Thailand
  • Vietnam
  • Europe, Middle East & Africa
  • Denmark
  • Egypt
  • Finland
  • France
  • Germany
  • Israel
  • Italy
  • Netherlands
  • Nigeria
  • Norway
  • Poland
  • Qatar
  • Russia
  • Saudi Arabia
  • South Africa
  • Spain
  • Sweden
  • Switzerland
  • Turkey
  • United Arab Emirates
  • United Kingdom


Please Note: PDF & Excel + Online Access - 1 Year


1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Stakeholders
2. Research Methodology
2.1. Define: Research Objective
2.2. Determine: Research Design
2.3. Prepare: Research Instrument
2.4. Collect: Data Source
2.5. Analyze: Data Interpretation
2.6. Formulate: Data Verification
2.7. Publish: Research Report
2.8. Repeat: Report Update
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Market Dynamics
5.1.1. Drivers
5.1.1.1. Growing customer inclination toward smart devices
5.1.1.2. Increasing adoption of predictive maintenance in digital infrastructure worldwide
5.1.1.3. Need for cost and operational efficiency in enterprises
5.1.2. Restraints
5.1.2.1. Latency issues due to massive data generation
5.1.3. Opportunities
5.1.3.1. Investments to integrate AI edge computing in various end-user industries
5.1.3.2. Adoption of AI edge computing in smart cities for intelligent traffic controls and parking communications
5.1.4. Challenges
5.1.4.1. Data privacy and security concerns associated with AI Edge computing
5.2. Market Segmentation Analysis
5.2.1. Component: Expanding usage of software components for real-time analytics
5.2.2. Data Source: Increasing demand for mobile data to creat
5.2.3. Application:
5.2.4. End-User: Growing utilization by IT and telecommunication sector to optimize network operations and enhance customer experience
5.3. Market Disruption Analysis
5.4. Porter’s Five Forces Analysis
5.4.1. Threat of New Entrants
5.4.2. Threat of Substitutes
5.4.3. Bargaining Power of Customers
5.4.4. Bargaining Power of Suppliers
5.4.5. Industry Rivalry
5.5. Value Chain & Critical Path Analysis
5.6. Pricing Analysis
5.7. Technology Analysis
5.8. Patent Analysis
5.9. Trade Analysis
5.10. Regulatory Framework Analysis
6. AI Edge Computing Market, by Component
6.1. Introduction
6.2. Hardware
6.3. Services
6.4. Software
7. AI Edge Computing Market, by Data Source
7.1. Introduction
7.2. Biometric Data
7.3. Mobile Data
7.4. Sensor Data
8. AI Edge Computing Market, by Application
8.1. Introduction
8.2. Access Management
8.3. Autonomous Vehicles
8.4. Energy Management
8.5. Remote Monitoring & Predictive Maintenance
8.6. Telemetry
8.7. Video Surveillance
9. AI Edge Computing Market, by End-User
9.1. Introduction
9.2. Automotive
9.3. Energy & Utilities
9.4. Government & Public
9.5. Healthcare
9.6. IT & Telecom
9.7. Manufacturing
10. Americas AI Edge Computing Market
10.1. Introduction
10.2. Argentina
10.3. Brazil
10.4. Canada
10.5. Mexico
10.6. United States
11. Asia-Pacific AI Edge Computing Market
11.1. Introduction
11.2. Australia
11.3. China
11.4. India
11.5. Indonesia
11.6. Japan
11.7. Malaysia
11.8. Philippines
11.9. Singapore
11.10. South Korea
11.11. Taiwan
11.12. Thailand
11.13. Vietnam
12. Europe, Middle East & Africa AI Edge Computing Market
12.1. Introduction
12.2. Denmark
12.3. Egypt
12.4. Finland
12.5. France
12.6. Germany
12.7. Israel
12.8. Italy
12.9. Netherlands
12.10. Nigeria
12.11. Norway
12.12. Poland
12.13. Qatar
12.14. Russia
12.15. Saudi Arabia
12.16. South Africa
12.17. Spain
12.18. Sweden
12.19. Switzerland
12.20. Turkey
12.21. United Arab Emirates
12.22. United Kingdom
13. Competitive Landscape
13.1. Market Share Analysis, 2023
13.2. FPNV Positioning Matrix, 2023
13.3. Competitive Scenario Analysis
13.3.1. EdgeCortix Raises USD 20 Million for Technology Development and Global Expansion
13.3.2. Lenovo Delivers AI at the Edge, Bringing Next Generation Intelligence to Data
13.3.3. Unigen Launches Compact Edge AI Computing Solutions
13.4. Strategy Analysis & Recommendation
14. Competitive Portfolio
14.1. Key Company Profiles
14.2. Key Product Portfolio

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings